
Programming with classical quantum
datatypes

Robin Cockett & Brett Giles

(robin,gilesb)@cpsc.ucalgary.ca

University of Calgary

FMCS 2006, Programming with classical quantum datatypes – p. 1/49

Yet another Quantum Programming
Language (QPL)...

Linear type system with (classically controlled)
datatypes

No higher-order constructs ...

Only built-in types are Qbit and Int.

Built-in unitary transformations.

A QPL program consists of function definitions and
“main” instructions.

Compiles to Quantum Stack Machine (QSM).

Quantum assembler calculates density matrix.

FMCS 2006, Programming with classical quantum datatypes – p. 2/49

Semantics ...

Countably infinite bi-products of completely positive
matrices with trace less than or equal to 1.

fHilb → CPM(fHilb) → Mat∞(CPM(fHilb))

Similar to the semantics of Peter Selinger’s QPL.

FMCS 2006, Programming with classical quantum datatypes – p. 3/49

This QPL ...

Can declare (classically controlled) datatypes (e.g .
lists of Quantum bits).

Linear variables are unscoped : live from introduction
to first use (cannot be used twice).

Classical data extracted from linear variables by use
command.

Classical variables are scoped : live to end of a block
(multiple uses permitted).

Quantum bits can be measured, Integers have usual
arithmetic functions

FMCS 2006, Programming with classical quantum datatypes – p. 4/49

Example datatype declarations

type Bool = { True | False }

type L i s t a = { N i l | Cons (a , (L i s t a)) }

type E i t h e r a b = { L e f t (a) | Right (b) }

type Maybe a = { Nothing | Just (a) }

type BinTree a = { Leaf (a) |
Br ((BinTree a) , (BinTree a)) }

FMCS 2006, Programming with classical quantum datatypes – p. 5/49

Language constructs continued ...

Function declaration

rotate :: (n : Int, x1 : Qbit, x2 : List(Qbit);

y1 : Qbit, y2 : List(Qbit))

= {statements}

Function calls:

rotate(n, x, y;x, y);

(x, y) = rotate(n, x, y);

rotate(n) x y;

Had q;Not q;Not q1<=q2; . . .

FMCS 2006, Programming with classical quantum datatypes – p. 6/49

Example Program: coin flip

Import Prelude . qp l

c f l i p : : (; b : Bool) =
{ q = |0 > ;

Had q ;
measure q of

|0 > => { b = False }
|1 > => { b = True } ;

}

main : : () =
{ b = c f l i p () ; }

FMCS 2006, Programming with classical quantum datatypes – p. 7/49

Language construct: measurement

measure q of
|0〉 ⇒ {. . .}

|1〉 ⇒ {. . .};

. . . measurement is a control construct . . .

FMCS 2006, Programming with classical quantum datatypes – p. 8/49

Example Program: Teleport

prepare : : (; a : Qbit , b : Qbit)
= { a = |0 > ; b = |0 > ;

Had a ;
Not b <= a } / / Con t ro l l ed Not

t e l e p o r t : : (x : Qbit ; b : Qbit)
= { (a , b) = prepare () ;

Not a <= x ;
Had x ;
measure a of |0 > => { }

|1 > => { Not b } ;
measure x of |0 > => { }

|1 > => {RhoZ b } }

FMCS 2006, Programming with classical quantum datatypes – p. 9/49

Language constructs continued ...

Loops: ... handled by recursion.

Pattern matching:

case q of
nil ⇒ {. . .}

cons(x, xs) ⇒ {. . .};

FMCS 2006, Programming with classical quantum datatypes – p. 10/49

Example Program: append

Import Prelude . qp l

append : : (x : L i s t (a) , y : L i s t (a) ; z : L i s t (a)) =
{ case x of

N i l => { z = y }
Cons (v , vs) => { z = Cons (v , append (vs , y)) }

}

FMCS 2006, Programming with classical quantum datatypes – p. 11/49

Language constructs continued ...

Discarding:

discard q1, . . . , qn;

implicit discarding of variables on joining of control
paths (with warning).

Linear assignment is basic:

q = expression;

q is a linear variable ...
There is syntactic sugar for classical assignment (see
below).

FMCS 2006, Programming with classical quantum datatypes – p. 12/49

Using classical data ...

use x1, . . . , xn in {statements}

Syntactic sugar:

x := expr; . . . ; ≡ x = expr;
use x in {. . . ; }

use x1, . . . , xn; . . . ; ≡ use x1, . . . , xn in {. . . ; }

FMCS 2006, Programming with classical quantum datatypes – p. 13/49

Example Program: rotate

r o t a t e : : (n : Int , h : Qbit , z : L i s t (Qbit) ;
h : Qbit , z : L i s t (Qbit))

= { case z of
N i l =>

{ discard n ;
z = N i l }

Cons (x , y) =>
{ use n in

{ R(n) x h ;
m = n+1 } ;

r o t a t e (m) h y ;
z = Cons (x , y) }

}

FMCS 2006, Programming with classical quantum datatypes – p. 14/49

Example Program: Quantum Fourier
Transform

q f t : : (q f : L i s t (Qbit) ; q f : L i s t (Qbit)) =
{

case qf of
N i l => { q f = N i l }
Cons (head , t a i l) => {

{ Had head ;
r o t a t e (2) head t a i l ;
q f t t a i l ;
q f = Cons (head , t a i l) }

}

FMCS 2006, Programming with classical quantum datatypes – p. 15/49

A Quantum stack machine

The machine state consists of the quantum stack, a
classical stack, and a dump.

The quantum stack is represented as a tree, with
three types of nodes (Qbit, Datatype, Int) and values
at the leaves (zero probability branches are not
represented).

Operations are done primarily on the top node or top
few nodes. Rotation of the tree allows us to bring a
node to the top.

The dump is used to hold intermediate data during
instruction execution.

FMCS 2006, Programming with classical quantum datatypes – p. 16/49

Qbit Nodes

A Qbit is represented by a node with four branches,
labeled by 00, 01, 10 and 11 (equivalent to the density
matrix notation of a Qbit).

Note that physically, we only store those branches with
non-zero values at the leaves.

FMCS 2006, Programming with classical quantum datatypes – p. 17/49

Int nodes

Classical data is represented by a node with an arbitrary
(finite) number of branches labeled by classical values
(e.g. Int values):

FMCS 2006, Programming with classical quantum datatypes – p. 18/49

Datatype nodes

A node with a branch for each constructor which is labeled
by the constructor name and the variables the construction
binds.

FMCS 2006, Programming with classical quantum datatypes – p. 19/49

Binding ...

Variables bound along a branch of a node cannot be
rotated above their point of binding ... so can not be
manipulated directly in the Quantum stack.

FMCS 2006, Programming with classical quantum datatypes – p. 20/49

Example program evaluation: coin
flip ...

Import Prelude . qp l

c f l i p : : (; q : Qbit , r : Bool) =
{ q = |0 > ;

Had q ;
measure q of

|0 > => { q = |0 > ; r = True }
|1 > => { q = |1 > ; r = False } ;

}

main : : () =
{ (q , b) = c f l i p () ; }

FMCS 2006, Programming with classical quantum datatypes – p. 21/49

Empty stack

FMCS 2006, Programming with classical quantum datatypes – p. 22/49

Introduce Qbit 0

FMCS 2006, Programming with classical quantum datatypes – p. 23/49

Hadamard

FMCS 2006, Programming with classical quantum datatypes – p. 24/49

Measure

FMCS 2006, Programming with classical quantum datatypes – p. 25/49

Left branch

FMCS 2006, Programming with classical quantum datatypes – p. 26/49

Left branch: introduce Qbit 0

FMCS 2006, Programming with classical quantum datatypes – p. 27/49

Left branch: introduce True

FMCS 2006, Programming with classical quantum datatypes – p. 28/49

Swap to right branch

FMCS 2006, Programming with classical quantum datatypes – p. 29/49

Right branch: introduce Qbit 1

FMCS 2006, Programming with classical quantum datatypes – p. 30/49

Right branch: introduce False

FMCS 2006, Programming with classical quantum datatypes – p. 31/49

Merge

FMCS 2006, Programming with classical quantum datatypes – p. 32/49

Quantum Stack Machine Instructions

QPL programs compile to Quantum Stack Machine (QSM)
code.

QPL → QSM

QSM code is run by the QSM-assembler.
The design of an efficient yet basic instruction set for this
machine has been an issue ...

FMCS 2006, Programming with classical quantum datatypes – p. 33/49

QSM Instructions: node construction

QLoad x |k〉: creates a node called x with a single branch
labeled |k〉 on top of the Quantum stack.

QCons x cons: creates a node called x with a single
branch labeled cons (the specific constructor) on top
of the Quantum stack.

QMove x: removes the top value of the classical stack and
creates, on top of the Quantum stack, a node called x
with a single branch labeled by that classical value.

QBind z: expects a node with a single branch and binds
the variable z down that branch.

FMCS 2006, Programming with classical quantum datatypes – p. 34/49

Construction Transitions

(QLoad x |k〉:C, S,Q,D) =⇒

(C, S, x:[|k〉 → Q], D)

(QCons x c:C, S,Q,D) =⇒

(C, S, x:[c{} → Q], D)

(QBind z0:C, S, x:[c{z′1, . . . , z
′
n} → Q], D) =⇒

(C, S, x:[c{z′0, z
′
1, . . . , z

′
n} → Q[z′0/z0]], D)

(QMove x:C, v:S,Q,D) =⇒

(C, S, x:[v̄ → Q], D)

FMCS 2006, Programming with classical quantum datatypes – p. 35/49

QSM Instructions: node destruction

QUnbind x: Expects the stack have a node with a single
branch on top with a list of bound variables. The first
bound variable is removed and renamed to x to make
it free.

QDiscard: Discards the top node by merging its
“classical” branches.

FMCS 2006, Programming with classical quantum datatypes – p. 36/49

Destruction Transitions

(QDiscard:C, S, x:[|k〉 → Q], D) =⇒

(C, S,Q,D)

(QDiscard:C, S, x:[c{} → Q], D) =⇒

(C, S,Q,D)

(QDiscard:C, S, x:[v̄ → Q], D) =⇒

(C, v:S,Q,D)

(QUnbind y:C, S, x:[c{z′1, . . . , z
′
n} → Q], D) =⇒

(C, S, x:[c{z′2, . . . , z
′
n} → Q[y/z′1]], D)

(|k〉 ∈ {|0〉, |1〉})

FMCS 2006, Programming with classical quantum datatypes – p. 37/49

QSM Instructions: stack
manipulation

QPullup x: Rotates the node labeled x to the top of the
Quantum stack.

QApply 0 Had: Expects 1 Qbit on top of the Quantum
stack and applies the Hadamard transformation to it.

QApply 1 Rotate: Parametrizes the Rotate transform by
the top element of the classical stack and then applies
it to the 2 Qbits on the top of the stack.

QName x y: Renames the (visible) node x to y.

FMCS 2006, Programming with classical quantum datatypes – p. 38/49

Manipulation Transitions

(QPullup x:C, S,Q,D) =⇒

(C, S, pull(x,Q), D

(QApply n t:C, v1: · · · :vn:S,Q,D) =⇒

(C, v1: · · · :vn:S, transform([v1, . . . , vn], t, Q), D)

(QName x y:C, S,Q,D) =⇒

(C, S,Q[y/x], D)

FMCS 2006, Programming with classical quantum datatypes – p. 39/49

QSM Instructions: Quantum control;
Use; Split; Measure

Use label: Expects top of the Quantum stack to be
classical. For each branch put this value on the
classical stack, perform the computation at label,
which is ended by EndQC, and merge the results.

Split [Nil → label1, Cons → label2]: Expects a
datatype node on top of the Quantum stack. Executes
the code at labeli, which is ended with EndQC, on
each branch with a matching label and merges the
results.

Meas label1 label2: Expects a Qbit node on top of the
Quantum stack. Executes the code at label1, which is
ended with EndQC, on the |0〉 branch and label2 on
the |1〉 branch and merges the results.

FMCS 2006, Programming with classical quantum datatypes – p. 40/49

Transitions for Quantum Control -
Use

(Use ⊲CU :C, S, x:[v̄i → Qi], D) =⇒

(EndQC, S, 0,Qc(S, [(xi:vi → Qi, ⊲CU)], ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j,...,m, ⊲C, Q′):D) =⇒

(CU , S, xj ,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j+1,...,m, ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)

FMCS 2006, Programming with classical quantum datatypes – p. 41/49

Transitions for Quantum Control -
Split

(Split [(ci, ⊲Ci)]:C, S, x:[ci{Vi} → Qi], D) =⇒

(EndQC, S, 0,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)], ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)]i=j,...,m, ⊲C, Q′):D) =⇒

(Cj, S, xj ,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)]i=j+1,...,m, ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)

FMCS 2006, Programming with classical quantum datatypes – p. 42/49

Transitions for Quantum Control -
Measure

(Meas ⊲C0 ⊲C1:C, S, x:[|0〉 → Q0, |1〉 → Q1, 〈〉 → Q], D) =⇒

(EndQC, S, 0,Qc(S, [(xk:|k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xk:|k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, Q′):D) =⇒

(C0, S, x0,Qc(S, [(x1:|1〉 → Q1, ⊲C1)], ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [(x1:|1〉 → Q1, ⊲C1)], ⊲C, Q′):D) =⇒

(C1, S, x1,Qc(S, [], ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)

FMCS 2006, Programming with classical quantum datatypes – p. 43/49

QSM Instructions: classical control

Jump label: Jumps to the code at label.

CJump label: Pops the top element of the classical stack
if it is “true” jumps to the code at label.

Call label: Pushes the return code pointer onto the
dump and jumps to the subroutine code.

Return: Pops the code label off the dump and continues
execution of the code to which it points.

FMCS 2006, Programming with classical quantum datatypes – p. 44/49

Transitions for Classical Control

(Jump ⊲CJ :C, S,Q,D) =⇒

(CJ , S,Q,D)

(CJump ⊲CJ :C,False:S,Q,D) =⇒

(CJ , S,Q,D)

(CJump ⊲CJ :C,True:S,Q,D) =⇒

(C, S,Q,D)

(Call n ⊲CC :C, v1: · · · :vn:S,Q,D) =⇒

(CC , [v1, . . . , vn], Q,R(S, ⊲C):D)

(Return n, v1: · · · :vn:S′, Q,R(S, ⊲C):D) =⇒

(C, [v1, . . . , vn]:S,Q,D)

FMCS 2006, Programming with classical quantum datatypes – p. 45/49

QSM Instructions: classical

CGet n: Puts the nth Classical stack value on top of the
Classical stack.

CApply ADD: Pops the top values off the classical stack,
applies the operation and pushes the result back onto
the stack.

CLoad n: Pushes the constant value n onto the Classical
stack.

CPop: Pops the top element off the Classical stack.

FMCS 2006, Programming with classical quantum datatypes – p. 46/49

Transitions for Classical Operations

(CPop:C, v:S,Q,D) =⇒

(C, S,Q,D)

(CGet n:C, v1: · · · :vn:S,Q,D) =⇒

(c, vn:v1: · · · :vn:S,Q,D)

(CApply opn:C, v1: · · · :vn:S,Q,D) =⇒

(C, opn(v1, . . . , vn):S,Q,D)

(CLoad n :C, S,Q,D) =⇒

(C, n:S,Q,D)

FMCS 2006, Programming with classical quantum datatypes – p. 47/49

Recursion

The machine stack is actually a stream of stacks, where
stacks further down the stream correspond to progressive
unfoldings of the recursion. The limit of the stream is the
computation.
Instructions are lifted by the standard Kliesli lifting to
produce a function between streams of Quantum stacks.

FMCS 2006, Programming with classical quantum datatypes – p. 48/49

Conclusion

Where are we...

State of QPL compiler: Working, generating code!

State of quantum stack machine: Working with
this instruction set, revising for controlled
transforms.
State of QPL programs: order finding for Shor’s
factoring algorithm compiling, and quantum
search not done.

Where are we going...

Expect to complete implementation this fall.

Plan to make web runnable version available.
Executable compiler and QPL programs will be
down-loadable. FMCS 2006, Programming with classical quantum datatypes – p. 49/49

	Yet another Quantum Programming Language (QPL)...
	Semantics ...
	This QPL ...
	Example datatype declarations
	Language constructs continued ...
	Example Program: coin flip
	Language construct: measurement
	Example Program: Teleport
	Language constructs continued ...
	Example Program: append
	Language constructs continued ...
	Using classical data ...
	Example Program: rotate
	Example Program: Quantum Fourier Transform
	A Quantum stack machine
		extbf {Qbit} Nodes
		extbf {Int} nodes
	Datatype nodes
	Binding ...
	Example program evaluation: coin flip ...
	Empty stack
	Introduce Qbit 0
	Hadamard
	Measure
	Left branch
	Left branch: introduce Qbit 0
	Left branch: introduce True
	Swap to right branch
	Right branch: introduce Qbit 1
	Right branch: introduce False
	Merge
	Quantum Stack Machine Instructions
	QSM Instructions: node construction
	Construction Transitions
	QSM Instructions: node destruction
	Destruction Transitions
	QSM Instructions: stack manipulation
	Manipulation Transitions
	QSM Instructions: Quantum control; Use; Split; Measure
	Transitions for Quantum Control - Use
	Transitions for Quantum Control - Split
	Transitions for Quantum Control - Measure
	QSM Instructions: classical control
	Transitions for Classical Control
	QSM Instructions: classical
	Transitions for Classical Operations
	Recursion
	Conclusion

