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Yet another Quantum Programming
Language (QPL)...

Linear type system with (classically controlled)
datatypes

No higher-order constructs ...

Only built-in types are Qbit and Int.

Built-in unitary transformations.

A QPL program consists of function definitions and
“main” instructions.

Compiles to Quantum Stack Machine (QSM).

Quantum assembler calculates density matrix.
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Semantics ...

Countably infinite bi-products of completely positive
matrices with trace less than or equal to 1.

fHilb → CPM(fHilb) → Mat∞(CPM(fHilb))

Similar to the semantics of Peter Selinger’s QPL.
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This QPL ...

Can declare (classically controlled) datatypes (e.g .
lists of Quantum bits).

Linear variables are unscoped : live from introduction
to first use (cannot be used twice).

Classical data extracted from linear variables by use
command.

Classical variables are scoped : live to end of a block
(multiple uses permitted).

Quantum bits can be measured, Integers have usual
arithmetic functions ....

FMCS 2006, Programming with classical quantum datatypes – p. 4/49



Example datatype declarations

type Bool = { True | False }

type L i s t a = { N i l | Cons ( a , ( L i s t a ) ) }

type E i t h e r a b = { L e f t ( a ) | Right ( b ) }

type Maybe a = { Nothing | Just ( a ) }

type BinTree a = { Leaf ( a ) |
Br ( ( BinTree a ) , ( BinTree a ) ) }
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Language constructs continued ...

Function declaration

rotate :: (n : Int, x1 : Qbit, x2 : List(Qbit);

y1 : Qbit, y2 : List(Qbit))

= {statements}

Function calls:

rotate(n, x, y;x, y);

(x, y) = rotate(n, x, y);

rotate(n) x y;

Had q;Not q;Not q1<=q2; . . .
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Example Program: coin flip

# Import Prelude . qp l

c f l i p : : ( ; b : Bool ) =
{ q = |0 > ;

Had q ;
measure q of

|0 > => { b = False }
|1 > => { b = True } ;

}

main : : ( ) =
{ b = c f l i p ( ) ; }
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Language construct: measurement

measure q of
|0〉 ⇒ {. . .}

|1〉 ⇒ {. . .};

. . . measurement is a control construct . . .
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Example Program: Teleport

prepare : : ( ; a : Qbit , b : Qbit )
= { a = |0 > ; b = |0 > ;

Had a ;
Not b <= a } / / Con t ro l l ed Not

t e l e p o r t : : ( x : Qbit ; b : Qbit )
= { ( a , b ) = prepare ( ) ;

Not a <= x ;
Had x ;
measure a of |0 > => { }

|1 > => { Not b } ;
measure x of |0 > => { }

|1 > => {RhoZ b } }
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Language constructs continued ...

Loops: ... handled by recursion.

Pattern matching:

case q of
nil ⇒ {. . .}

cons(x, xs) ⇒ {. . .};
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Example Program: append

# Import Prelude . qp l

append : : ( x : L i s t ( a ) , y : L i s t ( a ) ; z : L i s t ( a ) ) =
{ case x of

N i l => { z = y }
Cons ( v , vs ) => { z = Cons ( v , append ( vs , y ) ) }

}
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Language constructs continued ...

Discarding:

discard q1, . . . , qn;

implicit discarding of variables on joining of control
paths (with warning).

Linear assignment is basic:

q = expression;

q is a linear variable ...
There is syntactic sugar for classical assignment (see
below).
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Using classical data ...

use x1, . . . , xn in {statements}

Syntactic sugar:

x := expr; . . . ; ≡ x = expr;
use x in {. . . ; }

use x1, . . . , xn; . . . ; ≡ use x1, . . . , xn in {. . . ; }
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Example Program: rotate

r o t a t e : : ( n : Int , h : Qbit , z : L i s t ( Qbit ) ;
h : Qbit , z : L i s t ( Qbit ) )

= { case z of
N i l =>

{ discard n ;
z = N i l }

Cons ( x , y ) =>
{ use n in

{ R( n ) x h ;
m = n+1 } ;

r o t a t e (m) h y ;
z = Cons ( x , y ) }

}
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Example Program: Quantum Fourier
Transform

q f t : : ( q f : L i s t ( Qbit ) ; q f : L i s t ( Qbit ) ) =
{

case qf of
N i l => { q f = N i l }
Cons ( head , t a i l ) => {

{ Had head ;
r o t a t e ( 2 ) head t a i l ;
q f t t a i l ;
q f = Cons ( head , t a i l ) }

}
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A Quantum stack machine

The machine state consists of the quantum stack, a
classical stack, and a dump.

The quantum stack is represented as a tree, with
three types of nodes (Qbit, Datatype, Int) and values
at the leaves (zero probability branches are not
represented).

Operations are done primarily on the top node or top
few nodes. Rotation of the tree allows us to bring a
node to the top.

The dump is used to hold intermediate data during
instruction execution.
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Qbit Nodes

A Qbit is represented by a node with four branches,
labeled by 00, 01, 10 and 11 (equivalent to the density
matrix notation of a Qbit).

Note that physically, we only store those branches with
non-zero values at the leaves.

FMCS 2006, Programming with classical quantum datatypes – p. 17/49



Int nodes

Classical data is represented by a node with an arbitrary
(finite) number of branches labeled by classical values
(e.g. Int values):
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Datatype nodes

A node with a branch for each constructor which is labeled
by the constructor name and the variables the construction
binds.
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Binding ...

Variables bound along a branch of a node cannot be
rotated above their point of binding ... so can not be
manipulated directly in the Quantum stack.
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Example program evaluation: coin
flip ...

# Import Prelude . qp l

c f l i p : : ( ; q : Qbit , r : Bool ) =
{ q = |0 > ;

Had q ;
measure q of

|0 > => { q = |0 > ; r = True }
|1 > => { q = |1 > ; r = False } ;

}

main : : ( ) =
{ ( q , b ) = c f l i p ( ) ; }
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Empty stack
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Introduce Qbit 0
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Hadamard
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Measure
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Left branch
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Left branch: introduce Qbit 0

FMCS 2006, Programming with classical quantum datatypes – p. 27/49



Left branch: introduce True
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Swap to right branch
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Right branch: introduce Qbit 1
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Right branch: introduce False
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Merge
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Quantum Stack Machine Instructions

QPL programs compile to Quantum Stack Machine (QSM)
code.

QPL → QSM

QSM code is run by the QSM-assembler.
The design of an efficient yet basic instruction set for this
machine has been an issue ...
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QSM Instructions: node construction

QLoad x |k〉: creates a node called x with a single branch
labeled |k〉 on top of the Quantum stack.

QCons x cons: creates a node called x with a single
branch labeled cons (the specific constructor) on top
of the Quantum stack.

QMove x: removes the top value of the classical stack and
creates, on top of the Quantum stack, a node called x
with a single branch labeled by that classical value.

QBind z: expects a node with a single branch and binds
the variable z down that branch.
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Construction Transitions

(QLoad x |k〉:C, S,Q,D) =⇒

(C, S, x:[|k〉 → Q], D)

(QCons x c:C, S,Q,D) =⇒

(C, S, x:[c{} → Q], D)

(QBind z0:C, S, x:[c{z′1, . . . , z
′
n} → Q], D) =⇒

(C, S, x:[c{z′0, z
′
1, . . . , z

′
n} → Q[z′0/z0]], D)

(QMove x:C, v:S,Q,D) =⇒

(C, S, x:[v̄ → Q], D)
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QSM Instructions: node destruction

QUnbind x: Expects the stack have a node with a single
branch on top with a list of bound variables. The first
bound variable is removed and renamed to x to make
it free.

QDiscard: Discards the top node by merging its
“classical” branches.
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Destruction Transitions

(QDiscard:C, S, x:[|k〉 → Q], D) =⇒

(C, S,Q,D)

(QDiscard:C, S, x:[c{} → Q], D) =⇒

(C, S,Q,D)

(QDiscard:C, S, x:[v̄ → Q], D) =⇒

(C, v:S,Q,D)

(QUnbind y:C, S, x:[c{z′1, . . . , z
′
n} → Q], D) =⇒

(C, S, x:[c{z′2, . . . , z
′
n} → Q[y/z′1]], D)

(|k〉 ∈ {|0〉, |1〉})
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QSM Instructions: stack
manipulation

QPullup x: Rotates the node labeled x to the top of the
Quantum stack.

QApply 0 Had: Expects 1 Qbit on top of the Quantum
stack and applies the Hadamard transformation to it.

QApply 1 Rotate: Parametrizes the Rotate transform by
the top element of the classical stack and then applies
it to the 2 Qbits on the top of the stack.

QName x y: Renames the (visible) node x to y.
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Manipulation Transitions

(QPullup x:C, S,Q,D) =⇒

(C, S, pull(x,Q), D

(QApply n t:C, v1: · · · :vn:S,Q,D) =⇒

(C, v1: · · · :vn:S, transform([v1, . . . , vn], t, Q), D)

(QName x y:C, S,Q,D) =⇒

(C, S,Q[y/x], D)
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QSM Instructions: Quantum control;
Use; Split; Measure

Use label: Expects top of the Quantum stack to be
classical. For each branch put this value on the
classical stack, perform the computation at label,
which is ended by EndQC, and merge the results.

Split [Nil → label1, Cons → label2]: Expects a
datatype node on top of the Quantum stack. Executes
the code at labeli, which is ended with EndQC, on
each branch with a matching label and merges the
results.

Meas label1 label2: Expects a Qbit node on top of the
Quantum stack. Executes the code at label1, which is
ended with EndQC, on the |0〉 branch and label2 on
the |1〉 branch and merges the results.
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Transitions for Quantum Control -
Use

(Use ⊲CU :C, S, x:[v̄i → Qi], D) =⇒

(EndQC, S, 0,Qc(S, [(xi:vi → Qi, ⊲CU)], ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j,...,m, ⊲C, Q′):D) =⇒

(CU , S, xj ,Qc(S, [(xi:vi → Qi, ⊲CU )]i=j+1,...,m, ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)
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Transitions for Quantum Control -
Split

(Split [(ci, ⊲Ci)]:C, S, x:[ci{Vi} → Qi], D) =⇒

(EndQC, S, 0,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)], ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)]i=j,...,m, ⊲C, Q′):D) =⇒

(Cj, S, xj ,Qc(S, [(xi:ci{Vi} → Qi, ⊲Ci)]i=j+1,...,m, ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)
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Transitions for Quantum Control -
Measure

(Meas ⊲C0 ⊲C1:C, S, x:[|0〉 → Q0, |1〉 → Q1, 〈〉 → Q], D) =⇒

(EndQC, S, 0,Qc(S, [(xk:|k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, 0):D)

(EndQC, S′, Q,Qc(S, [(xk:|k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, Q′):D) =⇒

(C0, S, x0,Qc(S, [(x1:|1〉 → Q1, ⊲C1)], ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [(x1:|1〉 → Q1, ⊲C1)], ⊲C, Q′):D) =⇒

(C1, S, x1,Qc(S, [], ⊲C, Q + Q′):D)

(EndQC, S′, Q,Qc(S, [], ⊲C, Q′):D) =⇒

(C, S,Q + Q′, D)
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QSM Instructions: classical control

Jump label: Jumps to the code at label.

CJump label: Pops the top element of the classical stack
if it is “true” jumps to the code at label.

Call label: Pushes the return code pointer onto the
dump and jumps to the subroutine code.

Return: Pops the code label off the dump and continues
execution of the code to which it points.
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Transitions for Classical Control

(Jump ⊲CJ :C, S,Q,D) =⇒

(CJ , S,Q,D)

(CJump ⊲CJ :C,False:S,Q,D) =⇒

(CJ , S,Q,D)

(CJump ⊲CJ :C,True:S,Q,D) =⇒

(C, S,Q,D)

(Call n ⊲CC :C, v1: · · · :vn:S,Q,D) =⇒

(CC , [v1, . . . , vn], Q,R(S, ⊲C):D)

(Return n, v1: · · · :vn:S′, Q,R(S, ⊲C):D) =⇒

(C, [v1, . . . , vn]:S,Q,D)
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QSM Instructions: classical

CGet n: Puts the nth Classical stack value on top of the
Classical stack.

CApply ADD: Pops the top values off the classical stack,
applies the operation and pushes the result back onto
the stack.

CLoad n: Pushes the constant value n onto the Classical
stack.

CPop: Pops the top element off the Classical stack.
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Transitions for Classical Operations

(CPop:C, v:S,Q,D) =⇒

(C, S,Q,D)

(CGet n:C, v1: · · · :vn:S,Q,D) =⇒

(c, vn:v1: · · · :vn:S,Q,D)

(CApply opn:C, v1: · · · :vn:S,Q,D) =⇒

(C, opn(v1, . . . , vn):S,Q,D)

(CLoad n :C, S,Q,D) =⇒

(C, n:S,Q,D)
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Recursion

The machine stack is actually a stream of stacks, where
stacks further down the stream correspond to progressive
unfoldings of the recursion. The limit of the stream is the
computation.
Instructions are lifted by the standard Kliesli lifting to
produce a function between streams of Quantum stacks.
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Conclusion

Where are we...

State of QPL compiler: Working, generating code!

State of quantum stack machine: Working with
this instruction set, revising for controlled
transforms.
State of QPL programs: order finding for Shor’s
factoring algorithm compiling, and quantum
search not done.

Where are we going...

Expect to complete implementation this fall.

Plan to make web runnable version available.
Executable compiler and QPL programs will be
down-loadable. FMCS 2006, Programming with classical quantum datatypes – p. 49/49
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