
Compiling a Quantum Programming
Language

Brett Giles

gilesb@cpsc.ucalgary.ca

University of Calgary

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 1/23

Quantum vs. Classical

Quantum Classical
Data: qbit bit

Form: α0 + β1 0 or 1
(

αᾱ αβ̄

βᾱ ββ̄

)

(a, b)(P (= 0) = a)

Operations: Unitary Transforms Logical Gates
Viewing: Measure (collapses) Branch
Multiples: Entanglement Control Flow

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 2/23

Measurement

One quantum bit:

α0 + β1

0

P0=|α|2

zzvv
vv

vv
vv

vv

1

P1=|β|2

$$
HH

HH
HH

HH
HH

0 1

Two q-bits, measure FIRST one:

α00 + β01 + γ10 + δ11

0

P0=|α|2+|β|2

ttjjjjjjjjjjjjjjjj

1

P1=|γ|2+|δ|2

**TTTTTTTTTTTTTTT

α00 + β01 γ10 + δ11

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 3/23

Unitary Transformation, pure and
mixed states

A matrix S ∈ Cn×nis Unitary when S∗S = I. A unitary
transformation will be represented by a Unitary matrix
(S). It is applied to a set of qbits (represented by a
matrix U) by applying this way: SUS∗.

Pure state: Quantum system is described by the state
vector u ∈ C2n

.

Mixed state: an outside observer has the viewpoint
that the system is in state ui with probability λi.
Denoted as the mixed state:

λ1{u1} + · · · + λm{um},
∑

i

λi = 1

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 4/23

Block QPL

Defined in Dr. Selinger’s paper, “Towards a Quantum
Programming Language”

Basic programming language operations.

Two types: bit and qbit.

In the following P,Q represent statements, L lists of
statements, (on the next slide), bi, qi, X legal identifiers, S a
transform, B a block, Γ a list of type constraints and bold
text keywords of the language.

Programs ::= B | export proc X : Γ → Γ {P}

Blocks B ::= {L}

Lists of statements L ::= P | P ;L fmcs 2003, Compiling a QPL, June 1, 2003 – p. 5/23

Block QPL Statements

Statements P,Q ::=
new bit b := 0 | new qbit q := 0
| b := 0 | b := 1
| q1, . . . , qn∗ = S

| skip

| B

| if b then P else Q | measure q then P else Q

| while b do P

| import proc X : Γ → Γ in Q

| proc X : Γ → Γ {P} in Q

| call X(x1, . . . , xn)

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 6/23

Examples of quantum flow charts

Fair Coin Toss

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 7/23

Example - a quantum coinflip.

1 { proc cf : a:bit -> a:bit
2 {
3 new qbit q := 0;
4 q *= H;
5 measure q then
6 a := 0
7 else
8 a := 1;
9 } in
10 {
11 new bit x := 0;
12 call cf(x);
13 while x do
14 call cf(x);
15 }
16 }

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 8/23

Example - adding two bits.

1 export procaddwcarry:
2 r:bit,carry:bit,a:bit,b:bit
3 -> r:bit,carry:bit,a:bit,b:bit
4 { carry:=0;
5 if a then
6 if b then {
7 r := 0;
8 carry := 1;
9 }
10 else
11 r := 1;
12 else
13 if b then
14 r:= 1;
15 else
16 r:= 0;
17 }

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 9/23

Emulating the Quantum Machine

We considered two possible ways to do this:

When running a coinflip, for example, set values
according to the probabilities and then show the
values of any bits or measured qbits at the end.

OR, directly implement the semantics, allowing one to
view the probabilites of the bit values or qbit matrices
along the way.

We felt the second was the most advantageous, especially
when designing quantum algorithms.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 10/23

Compiling Block-QPL

Of the four standard phases of a compiler (Lex, Parse,
Semantic Analysis, and Code Generation), semantic
analysis was the only one with somewhat different
characteristics.
This is because qbits may not be copied. For example,
when doing a unitary transform on 2 qbits, we may not
use the same qbit. As another example, when calling a
procedure with more than one qbit, they must all be
distinct.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 11/23

Combining classical and quantum
data in Quantum Flow Charts

Recall we only have two types, bit and qbit, with
typing contexts.

Semantically, an edge labeled with n bits and m qbits
can be replaced by 2n edges each labeled with m
qbits.

The state for the above is a 2n-tuple (A0, . . . , A2n−1) of
density matrices each in Cm×m

Extend the standard linear algebra operations on
matrices via operation on the component and
summing as needed.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 12/23

Semantics of QPL

Define signatures as lists of non-zero natural numbers. (A
signature is ρ = n1, . . . , ns.) We may associate a complex
vector space

Vρ = Cn1×n1 × · · · × Cns×ns.

Then consider the category V:

Objects: Signatures

Maps: f : ρ → ρ′ ⇐⇒ f is a complex linear function
f : Vρ → V ′

ρ

Identity: Identity function

Composition: Inherited

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 13/23

Semantics of QPL, cont’d

A superoperator is a linear function F that:

is positive. (A positive =⇒ F (A) positive.)

is completely positive. (idτ ⊗ F is positive for all
signatures τ)

trace(F (A)) ≤trace(A), for all positive A.

Then the semantics of QPL are given by the subcategory
Q of V which has the same objects and has the morphisms
restricted to superoperators.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 14/23

Interpretation of statements.

[[new bit b := 0]] newbit ::I → bit : a 7→ (a, 0)

[[new qbit q := 0]] newqbit ::I → qbit : a 7→

(

a 0

0 0

)

[[discard b]] discardbit ::bit → I : (a, b) 7→ a + b

[[discard q]] discardqbit ::qbit → I :

(

a b

c d

)

7→ a + d

[[measure q]] measure ::qbit → qbit⊕ qbit :
(

a b

c d

)

7→

((

a 0

0 0

)

,

(

0 0

0 d

))

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 15/23

A Quantum stack machine

A standard machine to implement simple classical
language is stack based.

We use a tree as a “stack”, where each item in the
stack is either a bit (has two branches) or qbit (has
four branches).

Each branch has a value associated with it (=
probability in bit, = elements of density matrix in
qbit.) A zero implies we do not need to save anything
under that branch.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 16/23

Quantum Stack machine instructions

newbit, discardbit, if, bit operations
setbit, unsetbit

newqbit, discardqbit, qbit operations
measure, utrans(8)

merge, initial, pullup, ret stack manipulations

All of these are of the type:
qStack×InsStream×Dump → qStack×InsStream×Dump

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 17/23

Example transitions during an IF

S | pullup(b); 〈c0|c1〉; c | D

→ ((p0, S0), (p1, S1)) | 〈c0|c1〉; c | D

→ S0 | c0 | cond0(p0, p1, S1, c1, c) : D

· · · → S′
0 | ret | cond0(p0, p1, S1, c1, c) : D

→ S1 | c1 | cond1(p0, p1, S
′
0, c) : D

· · · → S′
1 | ret | cond1(p0, p1, S

′
0, c) : D

→ ((p0, S
′
0), (p1, S

′
1)) | c | D

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 18/23

Looping

Semantics of a loop = Infinite unwind

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 19/23

Loop semantics

Given A = (A1, . . . , An).

Suppose semantics of X are
F (A1, . . . , An, B) = (C1, . . . , Cm, D).

Then

F (A, 0) = (F11(A), F21(A))

F (0, B) = (F12(B), F22(B))

and

G(A) = F11(A) +
∞

∑

i=0

F12(F
i
22(F21(A)))

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 20/23

Looping in the quantum stack
machine

Consider IL(A) = AN. Then, we add a loop instruction to
the stack machine that has type:

qStack×InsStream×Dump → IL(qStack×InsStream×Dump)

Recalling that IL(_) is a monad, with

η(a) = λn.a

µ = diagonal

we can now consider our quantum stack machine in the
Kleisli category, lifting the previously mentioned functions
in the standard way.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 21/23

Futures

Extensions to the types
Add tuples, sums and inductive types.
Add built-in types such as ints, chars.

Consider performance issues.

Investigate ways to handle IO of classical values.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 22/23

Thanks

Robin Cockett, for many ideas and much
encouragement

Peter Selinger, for the original paper (and the
diagrams)

The FMCS 2003 organizers.

My fellow grad students at Calgary.

fmcs 2003, Compiling a QPL, June 1, 2003 – p. 23/23

	Quantum vs. Classical
	Measurement
	Unitary Transformation, pure and mixed states
	Block QPL
	Block QPL Statements
	Examples of quantum flow charts
	Example - a quantum coinflip.
	Example - adding two bits.
	Emulating the Quantum Machine
	Compiling Block-QPL
	Combining classical and quantum data in Quantum Flow Charts
	Semantics of QPL
	Semantics of QPL, cont'd
	Interpretation of statements.
	A Quantum stack machine
	Quantum Stack machine instructions
	Example transitions during an IF
	Looping
	Loop semantics
	Looping in the quantum stack machine
	Futures
	Thanks

