
Towards a Quantum Programming Language

Peter Selinger

(as presented by Brett Giles and Dana Harrington)

{danaha,gilesb}@cpsc.ucalgary.ca

University of Calgary

Towards a Quantum Programming Language – p. 1/41



Linear Algebra Review

Scalars: α, β, λ ∈ C

Vectors: u, v, w ∈ C
n (Column Vectors)

Matrices: A, B, C ∈ C
n×m

Adjoint: A∗ = (aji)ij

Trace: tr(A) =
∑

i aii

Norm: |A|2 =
∑

ij |aij|2

Towards a Quantum Programming Language – p. 2/41



Properties of Matrices

A matrix S ∈ C
n×nis Unitary when S∗S = I. This can

be used for a change of basis.
B = SAS∗ =⇒ tr(B) = tr(A) and |B| = |A|
A matrix A is Hermitian if A = A∗. Note that A is
Hermitian iff A = SDS∗ for some unitary S and real
diagonal D.

A matrix A is Positive Hermitian if u∗Au ≥ 0 ∀u ∈ C
n

We define a tensor product over complex matrices.
For example:

(

0 1

−1 0

)

⊗ B =

(

0 B

−B 0

)

Towards a Quantum Programming Language – p. 3/41



Hermitian Matrices

Lemma. If A is Positive Hermitian, then |A| ≤ tr(A)

Definition. Dn = {A ∈ C
n×n|A is Positive Hermitian and

tr(A) ≤ 1}.
Definition. Define A v B ⇐⇒ A − B is Positive Hermitian.

Towards a Quantum Programming Language – p. 4/41



Measurement

One quantum bit:

α0 + β1

0

P0=|α|2

zzvv
vv

vv
vv

vv

1

P1=|β|2

$$
HH

HH
HH

HH
HH

0 1

Two q-bits, measure FIRST one:

α00 + β01 + γ10 + δ11

0

P0=|α|2+|β|2

ttjjjjjjjjjjjjjjjj

1

P1=|γ|2+|δ|2

**TTTTTTTTTTTTTTT

α00 + β01 γ10 + δ11

Towards a Quantum Programming Language – p. 5/41



Measurement continued

Two q-bits, measure one, then the other:

α00 + β01 + γ10 + δ11

0

P0=|α|2+|β|2

zzttttttttttttttt

1

P1=|γ|2+|δ|2

$$
JJJJJJJJJJJJJJJ

α00 + β01

0

P0=
|α|2

|α|2+|β|2

����
��

��
��

�

1

P1=
|β|2

|α|2+|β|2

��
77

77
77

77
7

γ10 + δ11

0

P0=
|γ|2

|γ|2+|δ|2

����
��

��
��

�

1

P1=
|δ|2

|γ|2+|δ|2

��
77

77
77

77
7

α00
(P = |α|2)

β01

(P = |β|2)
γ10

(P = |γ|2)
δ11

(P = |δ|2)

Towards a Quantum Programming Language – p. 6/41



Quantum Gates

N =

(

0 1

1 0

)

Nc =

(

I 0

0 N

)

H = 1√
2

(

1 1

1 −1

)

Hc =

(

I 0

0 H

)

V =

(

1 0

0 i

)

Vc =

(

I 0

0 V

)

W =

(

1 0

0
√

i

)

Wc =

(

I 0

0 W

)

Towards a Quantum Programming Language – p. 7/41



Mixed and Pure states

Pure state: Quantum system is described by the state
vector u ∈ C

2n

.

Mixed state: an outside observer has the viewpoint
that the system is in state ui with probability λi.
Denoted as the mixed state:

λ1{u1} + · · · + λm{um},
∑

i

λi = 1

A unitary transformation is applied component wise to
a mixed state.

If we measure a qbit in state α0 + β1 but ignore the
outcome, the system enters (from our view point) the
mixed state |α|2{0} + |β|2{1} Towards a Quantum Programming Language – p. 8/41



Density matrix notation

Given a system in state u, we can represent it by the
Density Matrix uu∗. Note that if u = γv, |γ| = 1 we
have uu∗ = γγvv∗ = vv∗.

eg. State of qbit u = 1√
5
0 − 2√

5
1 is uu∗ =

(

1

5
−2

5

−2

5

4

5

)

A mixed state is the linear combination of the density
matrices. eg., 1

5
{0} + 4

5
{1} is

1

5

(

1 0

0 0

)

+
4

5

(

0 0

0 1

)

=

(

1

5
0

0 4

5

)

Towards a Quantum Programming Language – p. 9/41



Quantum operations on Density
matrices - Measurement

Assume u =
(

v
w

)

, therefore uu∗ =

(

vv∗ vw∗

wv∗ ww∗

)

.

Measuring the first qbit results in
(

vv∗ 0

0 0

)

with probability |v|2.
(

0 0

0 ww∗

)

with probability |w|2.

The probability that the matrix occurs is its trace.

Mixed
(

A B

C D

)

7→
(

A 0

0 0

)

or
(

0 0

0 D

)

.

Towards a Quantum Programming Language – p. 10/41



Quantum operations on Density
matrices - Unitary transforms

A transform S maps the pure state u to Su, therefore,
the pure density matrix uu∗ goes to Suu∗S∗.

Extend this linearly to mixed states. A mixed density
matrix A is taken to SAS∗.

As unitary transformations and measurements are our only
interaction with a quantum state, there is no observable
difference between two mixed states with the same density
matrix.

Towards a Quantum Programming Language – p. 11/41



A Classical flow chart

Towards a Quantum Programming Language – p. 12/41



Rules for flow charts

Towards a Quantum Programming Language – p. 13/41



Rules for flow charts

Towards a Quantum Programming Language – p. 14/41



Example of permutation

φ : 1 7→ 2, 2 7→ 3, 3 7→ 1

2φ : (x1, x2, x3) 7→ (x3, x1, x2)

b1, b2, b3 : bit = (a0, a1, a2, a3, a4, a5, a6, a7)

↓ (φ)

b2b3b1 : bit = (a0, a4, a1, a5, a2, a6, a3, a7)

Before transform P (011) = a3, transformed to 110 which
still has probability a3

Towards a Quantum Programming Language – p. 15/41



A quantum flow chart

Towards a Quantum Programming Language – p. 16/41



Rules for quantum flow charts

Towards a Quantum Programming Language – p. 17/41



Rules for quantum flow charts

Towards a Quantum Programming Language – p. 18/41



Implementation issues

(All assumptions...)

Implement on QRAM type machine.

OS provides basic services:
Allocation and deallocation of qbits.
Access control.
Actual manipulation of qbits.

Towards a Quantum Programming Language – p. 19/41



Combining classical and quantum
data

Two types, bit and qbit, with typing contexts.

Semantically, an edge labelled with n bits and m qbits
can be replaced by 2n edges each labeled with m
qbits.

The state for the above is a 2n-tuple (A0, . . . , A2n−1) of
density matrices each in C

m×m

Extend the notions of trace, adjoints, unitary transform
and norm via operation on the component and
summing as needed.

Towards a Quantum Programming Language – p. 20/41



Examples of quantum flow charts

Fair Coin Toss

Towards a Quantum Programming Language – p. 21/41



Examples of quantum flow charts

Measure ; Deallocate = Deallocate

Towards a Quantum Programming Language – p. 22/41



Examples of quantum flow charts

Rename of qbit

Towards a Quantum Programming Language – p. 23/41



Examples of quantum flow charts

Classical Control

Towards a Quantum Programming Language – p. 24/41



Examples of quantum flow charts

Unreachability =⇒ elimation of edge

Towards a Quantum Programming Language – p. 25/41



Examples of quantum flow charts

Collapse via coin toss

Towards a Quantum Programming Language – p. 26/41



Examples of quantum flow charts

Postpone discard of qbit

Towards a Quantum Programming Language – p. 27/41



Looping

Semantics of a loop = Infinite unwind

Towards a Quantum Programming Language – p. 28/41



Loop semantics

Given A = (A1, . . . , An).

Suppose semantics of X are
F (A1, . . . , An, B) = (C1, . . . , Cm, D).

Then

F (A, 0) = (F11(A), F21(A))

F (0, B) = (F12(B), F22(B))

and

G(A) = F11(A) +
∞

∑

i=0

F12(F
i
22(F21(A)))

Towards a Quantum Programming Language – p. 29/41



Procedures and calls (non-recursive)

Semantics = In-lining

Towards a Quantum Programming Language – p. 30/41



Procedures and calls

Execution in a context

Towards a Quantum Programming Language – p. 31/41



Weakening

Towards a Quantum Programming Language – p. 32/41



Recursive Procedures

Towards a Quantum Programming Language – p. 33/41



Recursive Procedures

Towards a Quantum Programming Language – p. 34/41



Semantics of Recursion

X(Y ) is the flowchart with Y where the recursion
occurred.

Define Y0 as a non-terminating program and then
Yi+1 = X(Yi)

Let the semantics of Yi = Fi. (Note F0 = 0)

The semantics of X(Y ) is a function Φ of the
semantics of Y . (Fi+1 = Φ(Fi))

Then the semantics G of X is the limit of the Fi.

G = lim
i→∞

Fi.

Towards a Quantum Programming Language – p. 35/41



Loops from Recursion

Towards a Quantum Programming Language – p. 36/41



QPL

Terms P,Q ::=
new bit b := 0 | new qbit q := 0 | discard x

| b := 0 | b := 1 | q1, . . . , qn∗ = S

| skip | P ;Q
| if b then P else Q | measure q then P else Q

| while b do P

| proc X : Γ → Γ′ {P} in Q | y1, . . . , ym = X(x1, . . . , xn)

Towards a Quantum Programming Language – p. 37/41



Block QPL

Drop discard x.

Add {P} (Begin/end construction).

Change: proc X : Γ → Γ {P} in Q.

Towards a Quantum Programming Language – p. 38/41



Extensions to type system

Add tuples. i.e. (x1, . . . , xn).

Add sums. i.e choice of n previously defined types.

Infinite types require adaptation of the semantics.

Structured types : add case construct, requires infinite
types. For example, quantum list defined as:
L ::= I ⊕ (qbit ⊗ L).

Towards a Quantum Programming Language – p. 39/41



The Quantum Fourier Transform -
rotate

1 proc rotate:
2 (h:qbit,t:qbit list, n:int
3 ->h:qbit,t:qbit list)
4 {case t of:
5 nil -> {
6 discard n ;
7 t = nil}
8 (x O* y) -> {
9 x,h *= Rn ;
10 n:= n+1 ;
11 (h,y) = rotate (h, y, n);
12 t = x O* y}
13 } in...

Towards a Quantum Programming Language – p. 40/41



The Quantum Fourier Transform -
QFT

1 {proc qft:
2 (l:qbit list
3 ->l:qbit list) in
4 {case l of:
5 nil -> {
6 l = nil}
7 (h O* t) -> {
8 h *=H;
9 new int n:= 2;
10 (h,t) = rotate (h, t, n);
11 t = qft(t);
12 l= h O* t}
13 }

Towards a Quantum Programming Language – p. 41/41


	Linear Algebra Review
	Properties of Matrices
	Hermitian Matrices
	Measurement
	Measurement continued
	Quantum Gates
	Mixed and Pure states
	Density matrix notation
	Quantum operations on Density matrices - Measurement
	Quantum operations on Density matrices - Unitary transforms
	A Classical flow chart
	Rules for flow charts
	Rules for flow charts
	Example of permutation
	A quantum flow chart
	Rules for quantum flow charts
	Rules for quantum flow charts
	Implementation issues
	Combining classical and quantum data
	Examples of quantum flow charts
	Examples of quantum flow charts
	Examples of quantum flow charts
	Examples of quantum flow charts
	Examples of quantum flow charts
	Examples of quantum flow charts
	Examples of quantum flow charts
	Looping
	Loop semantics
	Procedures and calls (non-recursive)
	Procedures and calls 
	Weakening
	Recursive Procedures
	Recursive Procedures
	Semantics of Recursion
	Loops from Recursion
	QPL
	Block QPL
	Extensions to type system
	The Quantum Fourier Transform - rotate
	The Quantum Fourier Transform - QFT

