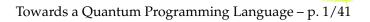


Towards a Quantum Programming Language

Peter Selinger (as presented by Brett Giles and Dana Harrington) {danaha,gilesb}@cpsc.ucalgary.ca

University of Calgary



Linear Algebra Review

- **Scalars:** $\alpha, \beta, \lambda \in \mathbb{C}$
- Vectors: $u, v, w \in \mathbb{C}^n$ (Column Vectors)
- Matrices: $A, B, C \in \mathbb{C}^{n \times m}$
- 6 Adjoint: $A^* = (\overline{a_{ji}})_{ij}$
- 6 Trace: $tr(A) = \sum_i a_{ii}$
- 6 Norm: $|A|^2 = \sum_{ij} |a_{ij}|^2$

Properties of Matrices

- A matrix S ∈ C^{n×n} is Unitary when S*S = I. This can be used for a change of basis.
 B = SAS* ⇒ tr(B) = tr(A) and |B| = |A|
- 6 A matrix A is *Hermitian* if $A = A^*$. Note that A is Hermitian iff $A = SDS^*$ for some unitary S and real diagonal D.
- 6 A matrix A is Positive Hermitian if $u^*Au \ge 0 \ \forall u \in \mathbb{C}^n$
- We define a tensor product over complex matrices. For example:

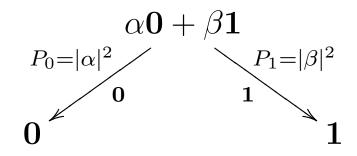
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes B = \begin{pmatrix} 0 & B \\ \hline -B & 0 \end{pmatrix}$$

Hermitian Matrices

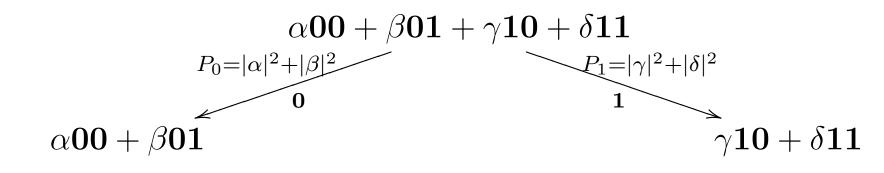
Lemma. If A is Positive Hermitian, then $|A| \leq tr(A)$ **Definition.** $D_n = \{A \in \mathbb{C}^{n \times n} | A \text{ is Positive Hermitian and} tr(A) \leq 1\}.$ **Definition.** Define $A \sqsubseteq B \iff A - B$ is Positive Hermitian.

Measurement

6 One quantum bit:

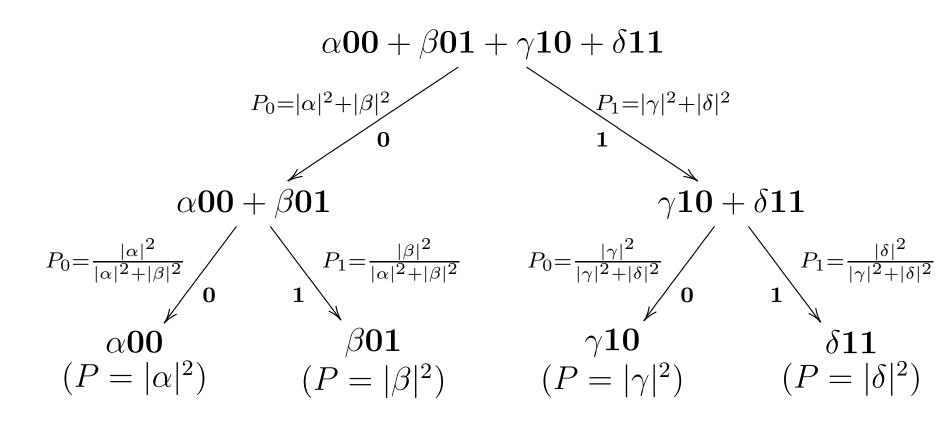


6 Two q-bits, measure FIRST one:



Measurement continued

Two q-bits, measure one, then the other:



Quantum Gates

$$N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad N_c = \begin{pmatrix} I & 0 \\ 0 & N \end{pmatrix}$$
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H_c = \begin{pmatrix} I & 0 \\ 0 & H \end{pmatrix}$$
$$V = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad V_c = \begin{pmatrix} I & 0 \\ 0 & V \end{pmatrix}$$
$$W = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{pmatrix} \qquad W_c = \begin{pmatrix} I & 0 \\ 0 & W \end{pmatrix}$$

Mixed and Pure states

- 6 *Pure state*: Quantum system is described by the state vector $u \in \mathbb{C}^{2^n}$.
- 6 *Mixed state*: an outside observer has the viewpoint that the system is in state u_i with probability λ_i . Denoted as the mixed state:

$$\lambda_1\{u_1\} + \dots + \lambda_m\{u_m\}, \qquad \sum_i \lambda_i = 1$$

- A unitary transformation is applied component wise to a mixed state.
- 6 If we measure a qbit in state $\alpha \mathbf{0} + \beta \mathbf{1}$ but ignore the outcome, the system enters (from our view point) the mixed state $|\alpha|^2 \{\mathbf{0}\} + |\beta|^2 \{\mathbf{1}\}$ Towards a Quantum Programming Language - p. 8/41

Density matrix notation

6 Given a system in state u, we can represent it by the Density Matrix uu^* . Note that if $u = \gamma v$, $|\gamma| = 1$ we have $uu^* = \gamma \overline{\gamma} vv^* = vv^*$.

6 eg. State of qbit
$$u = \frac{1}{\sqrt{5}}\mathbf{0} - \frac{2}{\sqrt{5}}\mathbf{1}$$
 is $uu^* = \begin{pmatrix} \frac{1}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} \end{pmatrix}$

6 A mixed state is the linear combination of the density matrices. eg., $\frac{1}{5}\{0\} + \frac{4}{5}\{1\}$ is

$$\frac{1}{5} \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} + \frac{4}{5} \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & 0\\ 0 & \frac{4}{5} \end{pmatrix}$$

Quantum operations on Density matrices - Measurement

Assume
$$u = \left(\frac{v}{w}\right)$$
, therefore $uu^* = \left(\begin{array}{c|c} vv^* & vw^* \\ \hline wv^* & ww^* \end{array}\right)$.

6 Measuring the first qbit results in

$$\left(\begin{array}{c|c} vv^* & 0\\ \hline 0 & 0\end{array}\right) \text{ with probability } |v|^2.$$

$$\left(\begin{array}{c|c} 0 & 0\\ \hline 0 & ww^*\end{array}\right) \text{ with probability } |w|^2.$$

The probability that the matrix occurs is its trace.

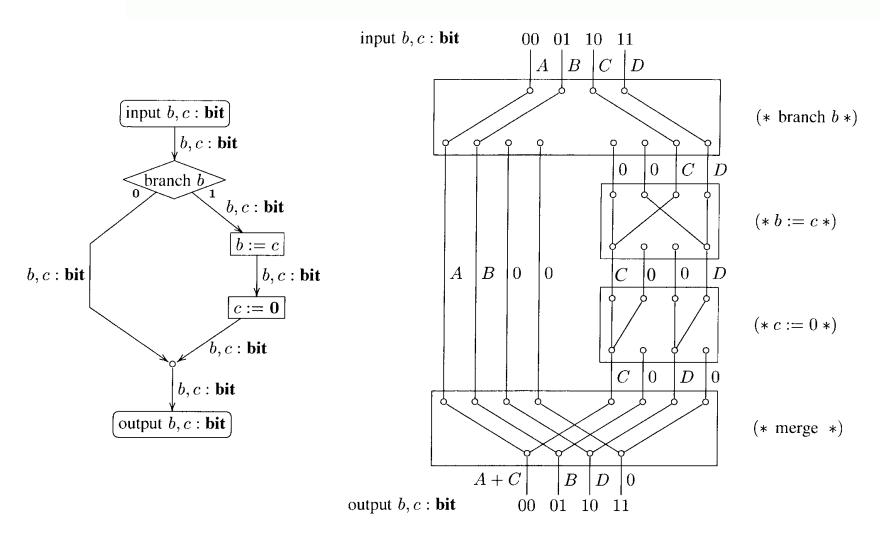
6 Mixed
$$\begin{pmatrix} A & B \\ \hline C & D \end{pmatrix} \mapsto \begin{pmatrix} A & 0 \\ \hline 0 & 0 \end{pmatrix}$$
 or $\begin{pmatrix} 0 & 0 \\ \hline 0 & D \end{pmatrix}$.

Quantum operations on Density matrices - Unitary transforms

- 6 A transform S maps the pure state u to Su, therefore, the pure density matrix uu^* goes to Suu^*S^* .
- 6 Extend this linearly to mixed states. A mixed density matrix A is taken to SAS^* .

As unitary transformations and measurements are our only interaction with a quantum state, there is no observable difference between two mixed states with the same density matrix.

A Classical flow chart



Rules for flow charts

Allocate bit:

$$\Gamma = A$$

$$\boxed{\text{new bit } b := 0}$$

$$b : \text{bit}, \Gamma = (A, 0)$$

Discard bit:

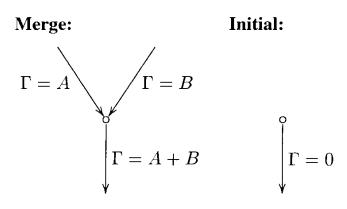
$$b: \mathbf{bit}, \Gamma = (A, B)$$
discard b
$$\Gamma = A + B$$

Assignment:

Branching:

$$b: \mathbf{bit}, \Gamma = (A, B)$$

Rules for flow charts



Permutation:

$$b_1, \dots, b_n : \mathbf{bit} = A_0, \dots, A_{2^n - 1}$$

$$permute \phi$$

$$b_{\phi(1)}, \dots, b_{\phi(n)} : \mathbf{bit} = A_{2^{\phi}(0)}, \dots, A_{2^{\phi}(2^n - 1)}$$

Example of permutation

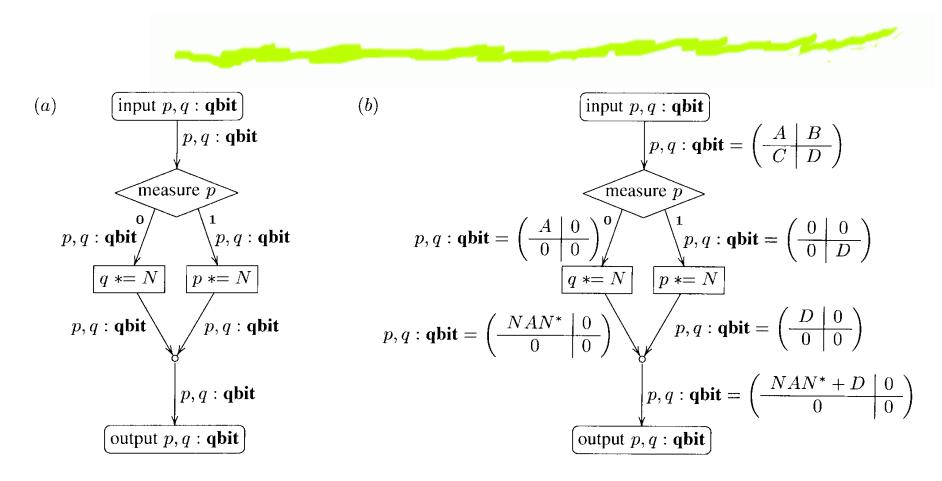
$$\phi: 1 \mapsto 2, \ 2 \mapsto 3, \ 3 \mapsto 1$$
$$2^{\phi}: (x_1, x_2, x_3) \mapsto (x_3, x_1, x_2)$$

$$b_1, b_2, b_3 : \mathbf{bit} = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$$

 $\downarrow (\phi)$
 $b_2 b_3 b_1 : \mathbf{bit} = (a_0, a_4, a_1, a_5, a_2, a_6, a_3, a_7)$

Before transform $P(011) = a_3$, transformed to 110 which still has probability a_3

A quantum flow chart



Rules for quantum flow charts

Allocate qbit:

Discard qbit:

 $\Gamma = A$ $\boxed{\begin{array}{c} \mathbf{r} \\ \text{new qbit } q := \mathbf{0} \\ q : \mathbf{qbit}, \Gamma = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array}\right)}$

$$q: \mathbf{qbit}, \Gamma = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$$

discard q
$$\Gamma = A + D$$

Unitary transformation:

Measurement:

$$\bar{q}: \mathbf{qbit}, \Gamma = A$$

$$\bar{q}: \mathbf{qbit}, \Gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

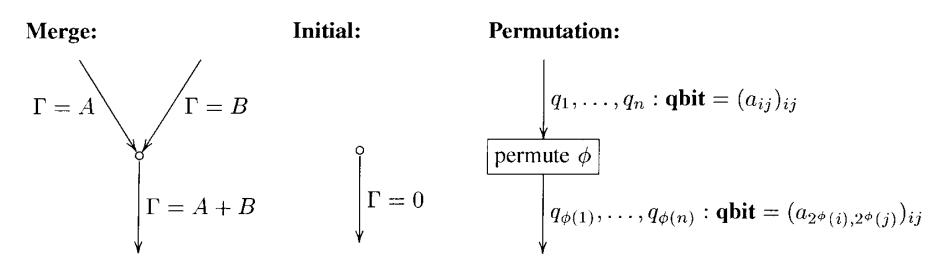
$$\bar{q}: \mathbf{qbit}, \Gamma = (S \otimes I)A(S \otimes I)^*$$

$$q: \mathbf{qbit}, \Gamma = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ Q & Q \end{pmatrix}$$

$$q: \mathbf{qbit}, \Gamma = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix}$$

0

Rules for quantum flow charts



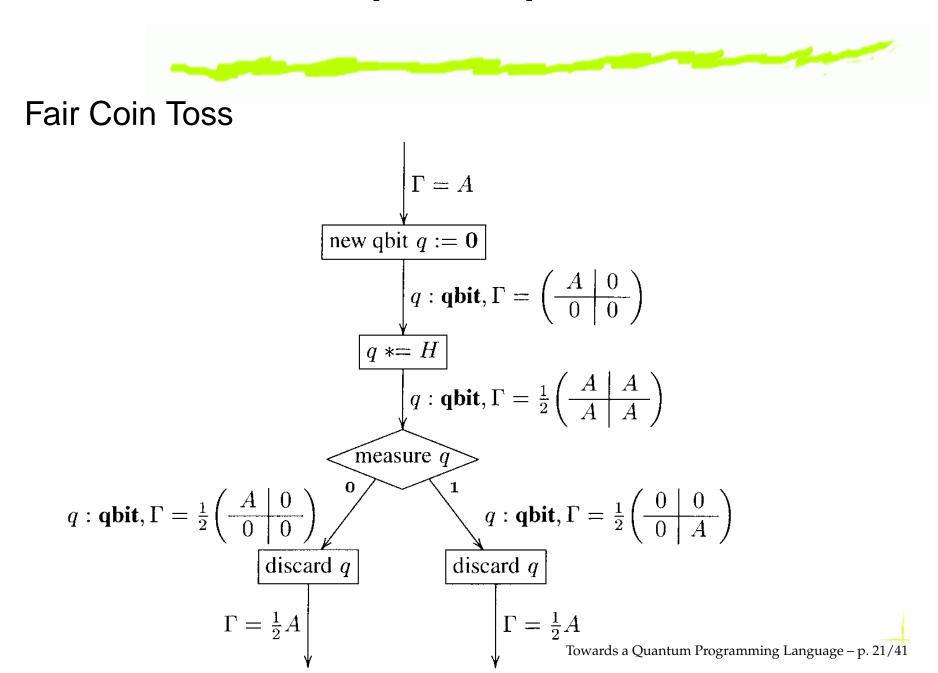
Implementation issues

(All assumptions...)

- Implement on QRAM type machine.
- OS provides basic services:
 - Allocation and deallocation of qbits.
 - Access control.
 - Actual manipulation of qbits.

Combining classical and quantum data

- 5 Two types, **bit** and **qbit**, with typing contexts.
- Semantically, an edge labelled with n bits and m qbits can be replaced by 2^n edges each labeled with m qbits.
- 6 The state for the above is a 2^n -tuple (A_0, \ldots, A_{2^n-1}) of density matrices each in $\mathbb{C}^{m \times m}$
- Extend the notions of trace, adjoints, unitary transform and norm via operation on the component and summing as needed.



Measure ; Deallocate = Deallocate

Rename of qbit

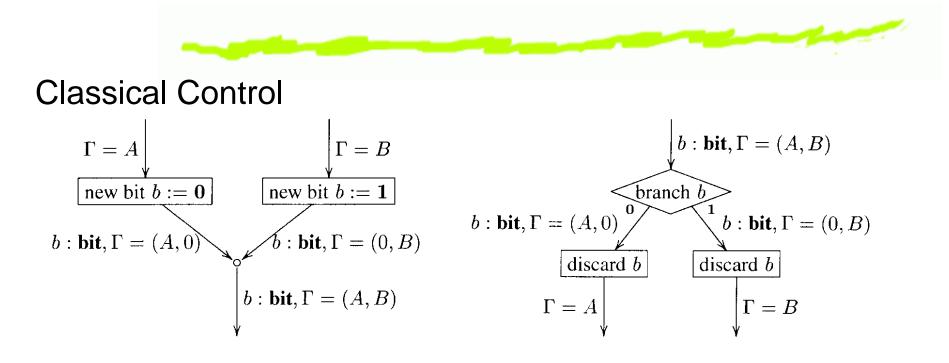
$$q: \mathbf{qbit}, \Gamma = A$$

$$q: \mathbf{qbit}, \Gamma = A$$

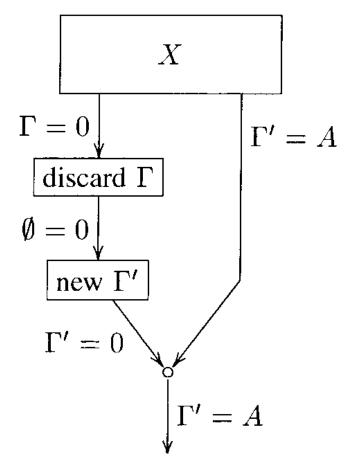
$$p \oplus = q$$

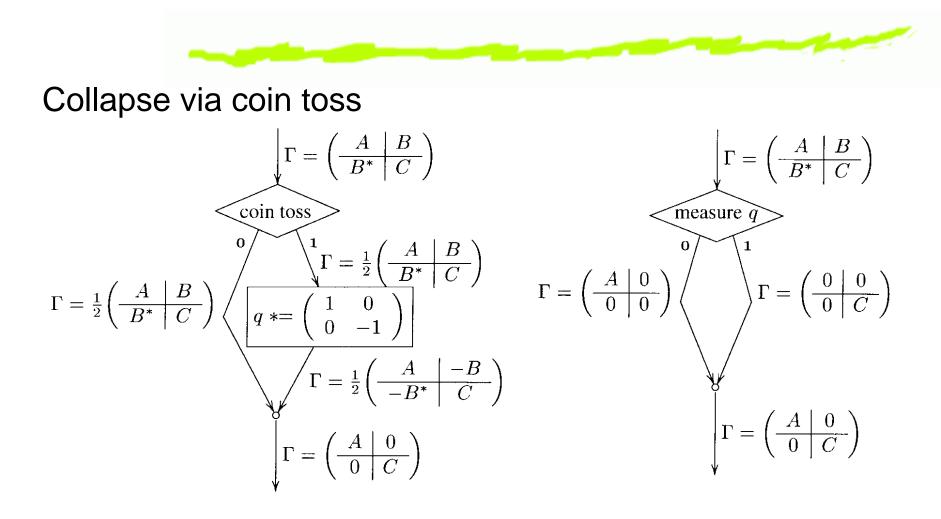
$$p: \mathbf{qbit}, \Gamma = A$$

Towards a Quantum Programming Language - p. 23/41

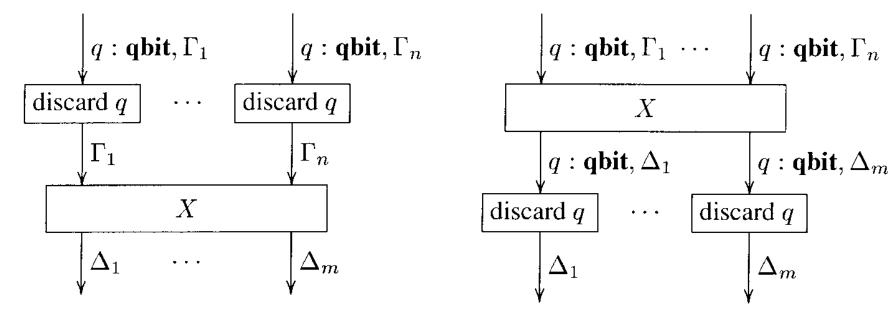


Unreachability \implies elimation of edge

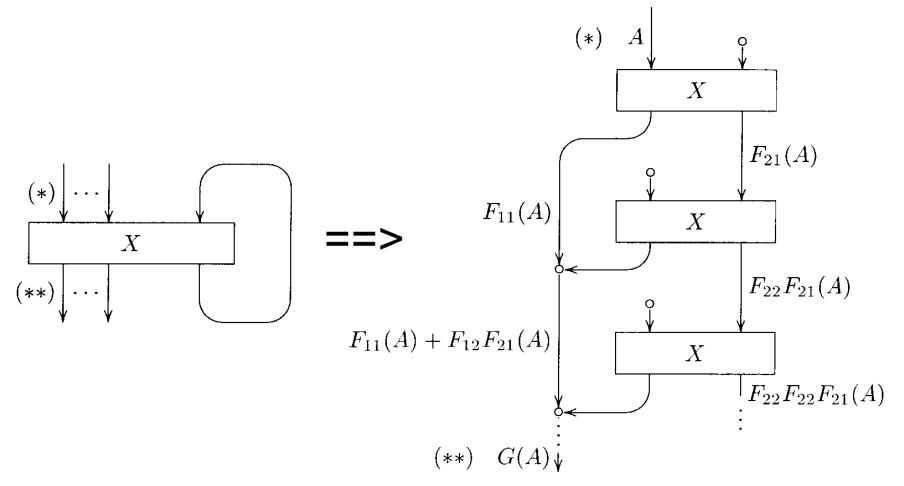




Postpone discard of qbit



Semantics of a loop = Infinite unwind



Loop semantics

- 6 Given $A = (A_1, ..., A_n)$.
- Suppose semantics of X are $F(A_1, \ldots, A_n, B) = (C_1, \ldots, C_m, D).$

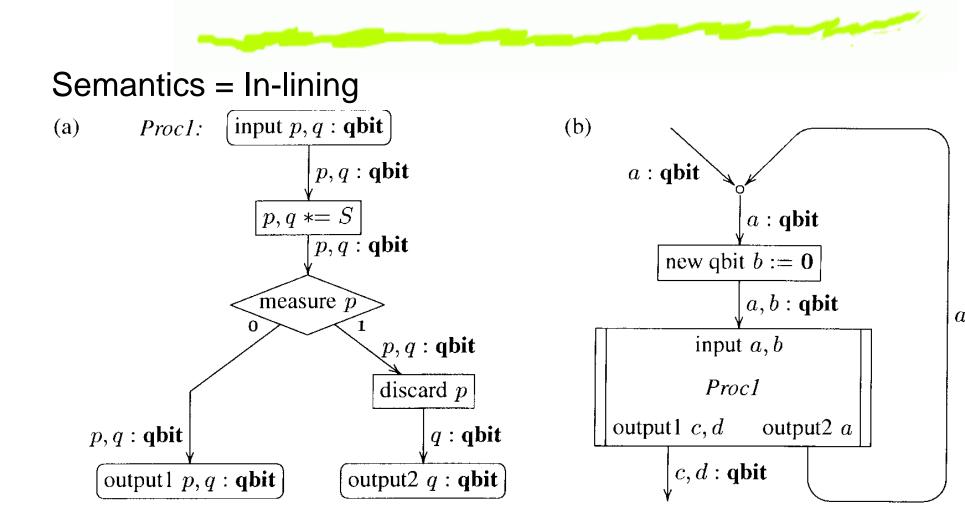
Then

$$F(A,0) = (F_{11}(A), F_{21}(A))$$
$$F(0,B) = (F_{12}(B), F_{22}(B))$$

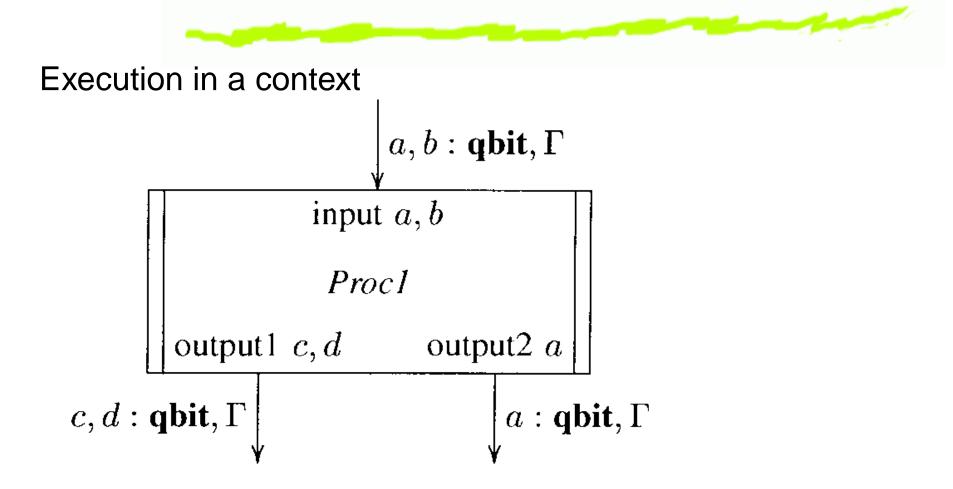
and

$$G(A) = F_{11}(A) + \sum_{i=0}^{\infty} F_{12}(F_{22}^{i}(F_{21}(A)))$$

Procedures and calls (non-recursive)

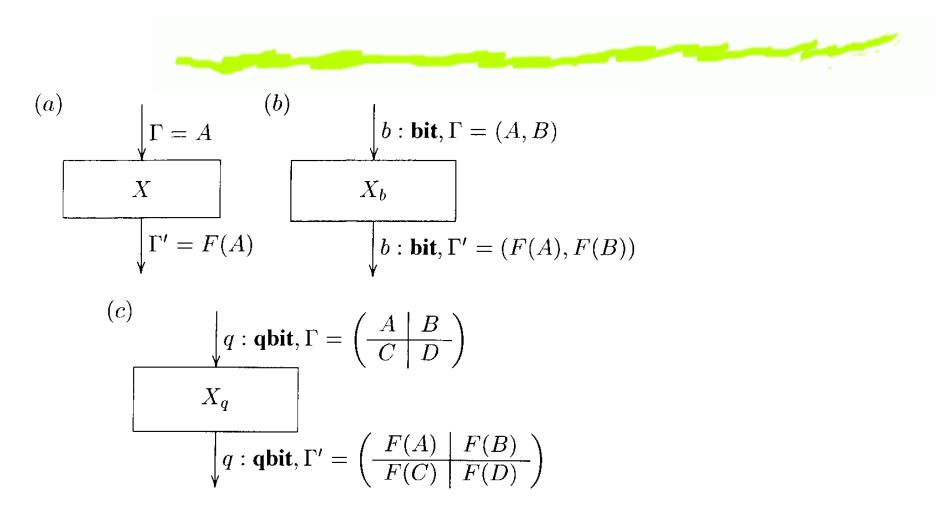


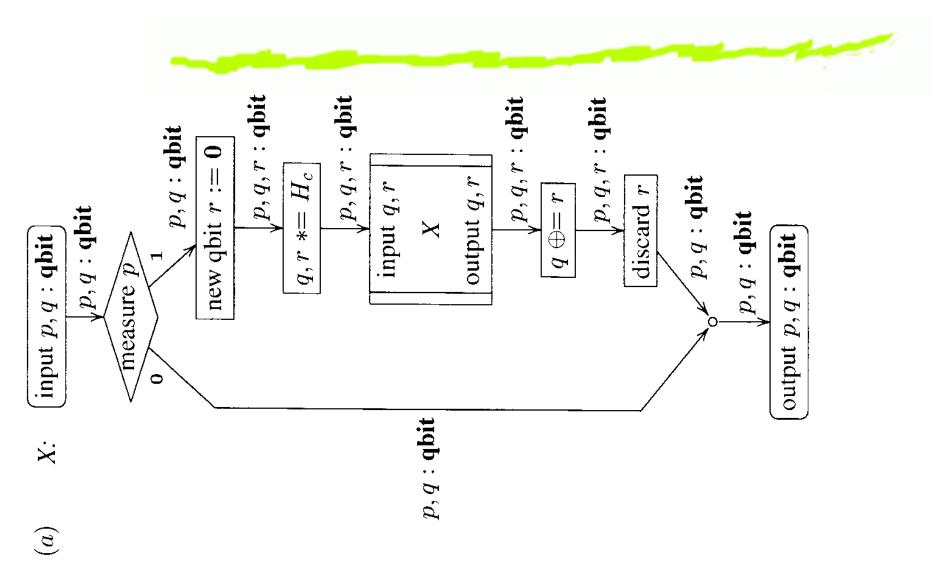
Procedures and calls



Towards a Quantum Programming Language – p. 31/41

Weakening





Recursive Procedures

Towards a Quantum Programming Language - p. 33/41

$\downarrow p, q, r, s : \mathbf{qbit}$: qbit p, q, r, s : **qbit** $p, q, r, s : \mathbf{qbit}$ p, q, r, s0 p, q, r : **qbit** $*=H_c$ s !| discard s S p, q, r : \mathbf{qbit} $\overset{||}{\oplus}$ new qbit : qbit $\mathbf{v}^{p,q,r}:\mathbf{q}^{pit}$ $\sqrt{p, q, r}$: **qbit** ŝ ٤., $p, q : \mathbf{qbit}$ ŗ., 0 p,q,r*== H_c new qbit r :=p, q: **qbit** measure q $q \oplus = r$ discard r $p, q : \mathbf{qbit}$ q,r $\downarrow p, q : \mathbf{qbit}$ $p, q : \mathbf{qbit}$ input p, q: **qbit** p,q: **qbit** 0 measure p p, q, r : **qbit** output 0 X p, q: **qbit** Towards a Quantum Programming Language - p. 34/41

 $\overline{}$

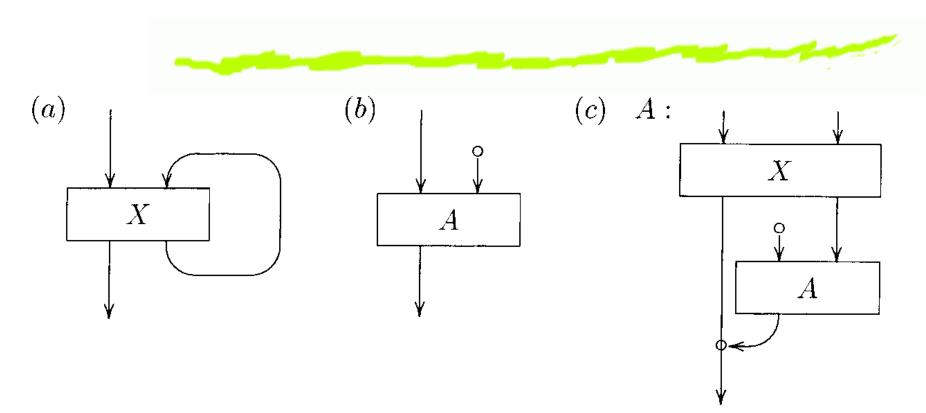
Recursive Procedures

Semantics of Recursion

- 6 X(Y) is the flowchart with Y where the recursion occurred.
- Define Y_0 as a non-terminating program and then $Y_{i+1} = X(Y_i)$
- Let the semantics of $Y_i = F_i$. (Note $F_0 = 0$)
- The semantics of X(Y) is a function Φ of the semantics of Y. ($F_{i+1} = \Phi(F_i)$)
- 5 Then the semantics G of X is the limit of the F_i .

$$G = \lim_{i \to \infty} F_i.$$

Loops from Recursion



QPL

Terms P, Q ::= **new bit** b := 0 | **new qbit** q := 0 | **discard** x $| b := 0 | b := 1 | q_1, \dots, q_n * = S$ | **skip** | P; Q | **if** b **then** P **else** Q | **measure** q **then** P **else** Q | **while** b **do** P| **proc** $X : \Gamma \to \Gamma' \{P\}$ **in** $Q | y_1, \dots, y_m = X(x_1, \dots, x_n)$

- \circ Drop discard x.
- 6 Add $\{P\}$ (Begin/end construction).
- 6 Change: proc $X : \Gamma \to \Gamma \{P\}$ in Q.

Extensions to type system

- 6 Add tuples. i.e. (x_1, \ldots, x_n) .
- 6 Add sums. i.e choice of *n* previously defined types.
- Infinite types require adaptation of the semantics.
- Structured types : add case construct, requires infinite types. For example, quantum list defined as: $L := I \oplus (\mathbf{qbit} \otimes L).$

