A python grammar checker

Brett G. Giles
February 15, 2003

Contents

1

1

Introduction
1.1 The Grammar for Grammar 0 v v i e e e e e e e e e e e

Lexical Scan and tokens

Parsing.

3.1 Python YACC file for parsing
3.2 Yaccrules

3.3 Classes defined for grammar parsing. oo
3.4 Driver file for running grammar L0 oL

Test data

Appendices

Introduction

This document is an example of parsing a grammar using pylex and pyyacc. In addition it gives
step by step printouts of computing nullable, first and follow sets.

1.

1 The Grammar for Grammar

The grammar for general grammars is defined by the following rules:

(grpy.grm 1)=

cfg -> rulelist .

rulelist -> rule rulelist

|
rule -> NONTERM ARROW productionlist DOT .

productionlist -> production BAR productionlist
| production.

production -> elementlist

elementlist -> element
| elementlist element .

element -> NONTERM | TERM .

2b

February 15, 2003

This code is written to file grpy.grm.
Uses element 13, production 12, and rule 15.

and by the tokens as:
(tokenlist 2a)=

ARRQW € ¢->??
DOT <
BAR c¢ I bR
TERM [A-Z]+

NONTERM [a-z_]+

This code is written to file tokenlist.

2 Lexical Scan and tokens

We only need a very simple lexer, with a few tokens.

modules.

(grlex.py 2b)=
#!/usr/bin/python
#
import lex,sys
(tokens 2c)
(patterns 3)
(otherLexCode 4)

This code is written to file grlex.py.

pygrammar.nw 2

We start with importing the lex and sys

The set of tokens is straightforward, with names given as above.

(tokens 2c¢)=

tokens = (
’NONTERM’ ,
)

TERM’, ’DOT’, ’ARROW’, ’BAR’

This code is used in chunk 2b.

February 15, 2003 pygrammar .nw 3

The patterns section defines how we recognize each of the tokens. Each variable or method in
this section is prefixed by t_. The portion following that must match the name of a token to be
returned, or if it is not to return a token, can be a name of your choice. The special name t_ignore
is implemented specially by pylex and should be used for dropping whitespace.

In the patterns themselves, we first ignore whitespace, including newlines. Following that are
the recognition patterns for the tokens.

(patterns 3)=
Completely ignored characters
t_ignore = \t’

def t_mlcomment(t):
r’ /\x(.[\n)*7*/’

t.lineno += t.value.count(’\n’)

Newlines
def t_newline(t):
r) \n+)
t.lineno += t.value.count("\n")

Operators

t_DOT =1r’\.’
t_BAR = r\|’
t_ARROW = r’->’

t_TERM = r’ [A-Z]+’
t_NONTERM = 1’[a-z_]+’

def t_error(t):
print "Illegal character %s" % repr(t.value[0])
t.skip(1)
This code is used in chunk 2b.

February 15, 2003 pygrammar .nw 4

At this point, we initialize the lexing and create a function that returns a list of the tokens. The
tokenize function accepts a string as input and returns the list of tokens found. Note that in a
parser using python yacc, the function tokenize is not used. It is left here simply for use in the
program when the lexer is run alone.

(otherLexCode 4)=
lex.lex()

def tokenize(data):
lex.input (data)

retval=[]
while 1:
tok = lex.token()
if not tok: break # No more input

retval.append (tok)

return retval

_main__":

if __name__ ==
Test it out
data = sys.stdin.read()
Give the lexer some input

tkns = tokenize(data)

Tokenize

for tok in tkns:
print tok
print

This code is used in chunk 2b.
Defines:

tokenize, never used.

ot

February 15, 2003 pygrammar .nw 5

3 Parsing.

We use py-yacc for parsing. See the documentation on the website for details of how the file is set
up.

3.1 Python YACC file for parsing

The first file, gryacc.py is composed of production rules. The second file grobjects.py is a set of
classes for the rules.
In the yacc file, we must:

e import the yacc module.
e bring in the tokens from the lexer we wrote.

Typically, this is done by importing the whole tokens file and then assigning tokens to have the
same value as the tokens in the lexer file.

(gryacc.py 5)=
#!/usr/bin/python
import yacc
import grobj
import grlex
import sys

tokens = grlex.tokens

(rules 6)
(yaccmain 7)

This code is written to file gryacc.py.

6

February 15, 2003 pygrammar .nw 6

3.2

Yacc rules

Rules for yacc consist of:

1.

A method definition. The name is significant. Start with p_ followed by the name on the
left hand side of the rule you are looking at. You may then follow with further identification,
normally only when considering rules with multiple right hand sides. In those cases, I split
each right hand side into its own method and add = for n =1,2,....

A doc string. The actual rule is specified in the doc string of the method, similar to what you
already did for the lexing. The parameter t passed to the method is a list with at least as
many members as there are terminals or nonterminals specified in the rule. For example in
p-cfg below, t has 2 members, while in p_rule it has 4.

A body. Each method then assigns the result of the parse to t[0] using the other items of t
as needed. In our example below, we either create a class instance (in p_cfg, p_rule,
p-production and p_element) or we create /append to a list of these (in p_rulelist.n,
p-productionlist.n and p_elementlist_n).

The special rule p_empty is used for recognition of empty productions.

(rules
def

def

def

def

def

def

def

def

6)=

p_cfg(t):

’cfg : rulelist’

t[0] = grobj.grammar(t[1])

p_rulelist_1(t):

’rulelist : rule rulelist ’
t[0] = t[2]

t[0] .insert(0,t[1])

p_rulelist_2(t):
’rulelist : empty ’
tf0] =[]

p_rule(t):
’rule : NONTERM ARROW productionlist DOT °
t[0] = grobj.rule(t[1], t[31)

p_productionlist_1(t):
’productionlist : production BAR productionlist’

if t[3]

t[0] = t[3]

t[0] .insert(0,t[1])
else:

tfo] = [t[1]1]

p_productionlist_2(t):
’productionlist : production’

t[0] = [t[1]]

p_production_1(t):
’production : elementlist’
t[0] = grobj.production(t[1])

p_production_2(t):
’production : empty’
t[0] = grobj.production([])

February 15, 2003 pygrammar .nw 7

def p_elementlist_1(t):
’elementlist : elementlist element’

if t[1]

t[0] = t[1]

t[0] .append (t[2])
else:

t[0] = [t[2]]

def p_elementlist_2(t):
’elementlist : element’

t[0] = [t[1]]

def p_element(t):
’>?’element : NONTERM
| TERM’’’
t[0] = grobj.element(t[1])

def p_empty(t):
’empty :’
pass

def p_error(t):
print "Whoa. You are seriously hosed."
Read ahead looking for a closing ’.’

while 1:
tok = yacc.token() # Get the next token
print tok
if not tok or tok.type == ’DOT’: break

yacc.restart()

This code is used in chunk 5.
Uses element 13, grammar 8b, production 12, and rule 15.

Here, we assign the parser to grparse and write some code that can be run if the yaccer is called
directly.

(yaccmain 7)=
grparse = yacc.yacc()

if __name__ == "__main__":

s = sys.stdin.read()
print s

result = yacc.parse(s)
print result

This code is used in chunk 5.
Defines:
grparse, used in chunk 17a.

8a

8b

8c

February 15, 2003 pygrammar .nw 8

3.3 Classes defined for grammar parsing.

This is the python file containing the basic classes used for parsing. Note that grammar constructions
that are simply lists of other construction do not have a class specified. Rather, we simply use the
native list type in Python.

(grobj.py 8a)=
#!/usr/bin/python

from types import *
import string

def isEltNull(elment):
return elment.isNull()
def allnull(elmntlist):
return reduce((lambda x, y : x and y), (map(isEltNull,elmntlist)), 1)
grammarClass 8b)
ruleClass 15)
productionClass 12)
elementClass 13)
(helperclasses 16)

o~~~

This code is written to file grobj.py.
Uses isNull 13.

The grammar class is our top level class, corresponding to the p_cfg rule in the parser. It contains
the methods for determining the first and follow sets of the grammar.

(grammarClass 8b)=
class grammar:
(grammarinit 8c)
(grammarmisc 9a)
(computenull 9b)
(computeFirst 10)
(computeFollow 11)

This code is used in chunk 8a.
Defines:
grammar, used in chunk 6.

The initialization of the class includes saving the rules and creating a set of the terminals and non-
terminals of the grammar. Flags stating whether nullable etc. calculations have been done are set
to false.

(grammarinit 8c)=
def __init__(self,rules):
self.rules = rules
self.nullDone = 0
self.firstDone = 0
self.followDone = 0

This code is used in chunk 8b.

Defines:
firstDone, used in chunks 10 and 11.
followDone, used in chunk 11.
nullDone, used in chunks 9b and 10.
rules, used in chunks 9-11.

February 15, 2003 pygrammar .nw

We have one miscellaneous function in this class, the function that prints the computed table.
9a (grammarmisc 9a)=
def printtable(self):
print ’%20s|%20s|%20s|%20s|’%(’nonterm’,’nullable’,
’First’,’Follow’)
printed={}
for rule in self.rules:
if printed.has_key(rule.lhs):
pass
else:
elmnt = rule.lhs
printed[elmnt]=1
if elmnt.elType() == ’N’:
print ’%20s|%20s%20s|%20s| % (20%° -2 ,20%’ -2 ,20%’ = ,20%’ =)
elmnt.fullprint (°%20s%20s|%20s1%20s1’)
print ’%20s|%20s%20s|%20s| % (20%° =2 ,20%° -’ ;20%’ = ,20%’ =)
print

This code is used in chunk 8b.
Defines:

printtable, used in chunks 9-11.
Uses lhs 15, rule 15, and rules 8c.

computeNullable is our first worker function in grammar. The algorithm is:

repeat
for each production X — Y7,...,Y:
if all Y; are nullable or kK =0
X.nullable — true

until no changes.

9b (computenull 9b)=
def computeNullable(self):
changed = 1

self.printtable()
while changed :
changed = 0
for rul in self.rules:
x = rul.lhs
if not x.isNull():
for prodn in rul.productions():
pelmnts = prodn.pdnelements()
if allnull(pelmnts):
changed = x.setNullable() or changed

self .printtable()
print
print
self.nullDone = 1

This code is used in chunk 8b.
Defines:

computeNullable, used in chunk 17a
Uses isNull 13, 1hs 15, nullDone 8c, pdnelements 12, printtable 9a, productions 15, rules 8c, and setNullable 13.

February 15, 2003 pygrammar .nw

computeFirst is the second worker function in grammar. The algorithm is:

repeat
for each production X — Y7,...,Y,
fori — 1 to k
if all Y7,...,Y;_1 are nullable or : = 1

X.first «— X.first U Y. first

until no changes.

10 (computeFirst 10)=
def computeFirst(self):
if not self.nullDone:
print ’Must compute nullable first.’
return
changed = 1
self.printtable()
while changed :
changed = 0
for rul in self.rules:
x = rul.lhs
for prodn in rul.productions():
pelmnts = prodn.pdnelements ()
k = len(pelmnts)
for i in range(0,k):
if allnull(pelmnts[0:i])
changed = x.addToFirst(pelmnts[i].firstSet()) or changed
self.printtable()
self.firstDone = 1

This code is used in chunk 8b.
Defines:
computeFirst, used in chunk 17a.
Uses addToFirst 13, firstDone 8c, 1hs 15, nullDone 8c, pdnelements 12, printtable 9a, productions 15

and rules 8c.

10

February 15, 2003 pygrammar .nw 11

computeFollow is the final worker function in grammar. The algorithm is:

repeat
for each production X — Y7,...,Y%
fori — 1 to k

if all Y;,...,Y) are nullable or i = k
Y;. follow «+— X. follow U Y;. follow

forj—i+1tok
if all Y;y1,...,Y;_1 are nullableor i +-1 = j

Y;.follow «— Yi.follozuUYj.first

until no changes.

11 (computeFollow 11)=
def computeFollow(self):
if not self.firstDone:
print ’Must compute first sets before follow.’
return
changed = 1
self.printtable()
while changed :
changed = 0
for rul in self.rules:
x = rul.lhs
for prodn in rul.productions():
pelmnts = prodn.pdnelements()
k = len(pelmnts)
for i in range(0,k):
if allnull(pelmnts[i+1:])
changed = pelmnts[i].addToFollow(x.followSet()) or changed
for j in range(i+1,k):
if allnull(pelmnts[i+1:3])
changed = pelmnts[i].addToFollow(pelmnts[j].firstSet()) or changed
self.printtable()
self.followDone = 1

This code is used in chunk 8b.

Defines:
computeFollow, used in chunk 17a.

Uses addToFollow 13, firstDone 8c, followDone 8c, lhs 15, pdnelements 12, printtable 9a, productions 15,
and rules 8c.

February 15, 2003 pygrammar .nw 12

This class is simply a element container.

12 (productionClass 12)=

class production:
def __init__(self,elist):
self.elts = elist

def __repr__(self):
retval = ’prodn:’ + self.elts.__repr__() +"\n"
return retval

def pdnelements(self):
return self.elts

This code is used in chunk 8a.

Defines:
pdnelements, used in chunks 9-11.
production, used in chunks 1 and 6.

13

February 15, 2003 pygrammar .nw 13

This class has an interesting implementation similar to that of how a singleton class can be done
in Python. Rather than a singleton, we want to be able to add new terminals and nonterminals
as elements as we come across them. However, we want to identify all instances that are the same
element. For example, if we created 5 instances, three with passing the string expression and two
with the string term, there should be only two distinct instances of element.

To accomplish this, we use a class level dictionary that uses the elt string as its key. The value
of this for any element is again a dictionary which contains what would normally be thought of as
instance variable. In the actual instance, we keep the value of the key (self.elt) and a reference
to the sub-dictionary that it points to (self.me).

The choice of a dictionary to hold the instance variables is not the only one. It could have been
an instance of a subclass, a list or any other structure that would hold the required data.

Note that the use of getter and setter methods is highly encouraged as this makes the actual
implementation of the class transparent to the rest of the program.

(elementClass 13)=
class element:
’?’The class is primarily a global dictionary. Whenver a new
element is added, we add it to the dictionary, unless it is
already there.’’’
elements={}
def __init__(self,elt):
if element.elements.has_key(elt):
self.elt = elt
self.me = element.elements[elt]
else:
self.elt = elt
element.elements[elt]={}
self.me=element.elements[elt]
if elt[0] in string.uppercase:
self .me[’elementType’] = °T’
self.me[’first’] = set(elt)
else:
self .me[’elementType’] = ’N’
self.me[’first’] = set()
self.me[’nullable’] = 0
self.me[’follow’] = set()

def addToFirst(self,terminalSet):
’?’Check if we have the members of terminalSet in
our first set already. If so, return O(False) as we
have not changed anything. Otherwise, union the two sets
and return true(1)’’’
if self.me[’first’].contains(terminalSet):
return O
else:
self .me[’first’] .union(terminalSet)
return 1

def addToFollow(self,terminalSet):
’?’Check if we have the members of terminalSet in
our follow set already. If so, return O(False) as we
have not changed anything. Otherwise, union the two sets
and return true(1)’’’
if self.me[’follow’].contains(terminalSet):
return 0O
else:
self.me[’follow’] .union(terminalSet)
return 1

February 15, 2003

def

def

def

def

def

def

def

def

def

def

fullprint(self,fmtstring):

pygrammar .nw

14

print fmtstringl(self.elt,self.me[’nullable’],self.me[’first’],self.me[’follow’])

setNullable(self):

’?2Check if we are already nullable. If so, return O(False) as we

have not changed anything. Otherwise, set to 1

and return true(1)’’’

if self.me[’nullable’]:
return O

else:
self.me[’nullable’] = 1
return 1

isNull(self):

return self.me[’nullable’]

firstSet(self):
return self.me[’first’]

followSet (self):
return self.me[’follow’]

elType (self):
return self.me[’elementType’]

__str__(self):

return self.elt
__repr__(self):
return self.elt

__eq__(self,other):
return self.elt == other.elt

__hash__(self):
return self.elt.__hash__()

This code is used in chunk 8a.

Defines:

addToFirst, used in chunk 10.
addToFollow, used in chunk 11.
element, used in chunks 1, 6, and 15.
elements, never used.

elementType, never used.

elt, never used.

isNull, used in chunks 8a and 9b.
me, never used.

setNullable, used in chunk 9b.

Uses contains 16, members 16, set 16, and union 16.

February 15, 2003 pygrammar .nw 15

This class just holds the element on the left hand side and all the productions on the right hand
side of a rule definition.

15 (ruleClass 15)=
class rule:
def __init__(self,lhs,rhs):
self.lhs = element (1lhs)
self.rhs = rhs

def __repr__(self):
retval = self.lhs.__repr__() + "->" + self.rhs[0].__repr__() +"\n"
for x in range (1, len(self.rhs)):
retval = retval + " " + self.rhs[x].__repr__() + "\n"

return retval

def productions(self):
return self.rhs

This code is used in chunk 8a.
Defines:
1hs, used in chunks 9-11.
productions, used in chunks 9-11.
rhs, never used.
rule, used in chunks 1, 6, and 9a.
Uses element 13.

16

February 15, 2003 pygrammar .nw 16

Unfortunately, Python does not have a built in “set” type. The distinguishing feature of a set is
that it is a container class that allows only one copy of a particular item in it. This is most easily
accomplished using a dictionary. For example, when adding new items to the set, we simply assign
a value of 0 to the __store keyed by the item.

(helperclasses 16)=
class set:
def __init__(self, item=None):
if item:
self.__store = {item:0}
else:
self.__store

{}

def size(self):
return len(self.__store)

def members(self):
return self.__store.keys()

def contains(self,otherset):
’?’Does self already contain otherset?’’’
for x in otherset.members():
if not self.__store.has_key(x): return O

return 1

def union(self,listSetElt):
if type(listSetElt) == ListType:
for i in listSetElt[:]:
self.__store[i]=0
elif type(listSetElt) == InstanceType:
if ("%s"%listSetElt.__class__) == ’grobj.set’:
for i in listSetElt.members():
self.__storel[i]=0
else:
self.__store[listSetElt]=0

def __repr__(self):
’?’Return representation of list of keys.’’’
return self.__store.keys().__repr__Q)

def __contains__(self,item):
return (self.__store.has_key(item))

def __getitem__(self,key):
’?’Convert to list of keys and then index.’’’
return self.__store.keys() [key]

This code is used in chunk 8a.
Defines:
contains, used in chunk 13.
members, used in chunk 13.
set, used in chunk 13.
size, never used.
union, used in chunk 13.

February 15, 2003 pygrammar .nw 17

3.4 Driver file for running grammar

Import, parse, compute.

17a (grammar.py 17a)=
#!/usr/bin/python
#
from grobj import *
from gryacc import grparse
get sys so we can access stdin
import sys

alias the stdin file desciptor
s = sys.stdin.read()
cfgrammar = grparse.parse (s)

cfgrammar. computeNullable ()
cfgrammar . computeFirst ()
cfgrammar . computeFollow()

This code is written to file grammar. py.
Uses computeFirst 10, computeFollow 11, computeNullable 9b, and grparse 7.

4 Test data

A variety of data to ensure this thing works correctly.
17b (sexp.grm 17b)=
s_expression -> atomic_symbol
| LPAR s_expression end_s_expression RPAR .

end_s_expression -> DOT s_expression
| s_expressions

s_expressions -> s_expressions DOT s_expression

|
atomic_symbol -> LETTER atom_part .
atom_part -> LETTER atom_part

| NUMBER atom_part
|

This code is written to file sexp.grm.

February 15, 2003

5 Appendices
Chunk list

computeFirst 10)
computeFollow 11)
computenull 9b)
elementClass 13)
grammar.py 17a)
grammarClass 8b)
grammarinit 8c)
grammarmisc 9a)

(

(

(

(

(

(

(

(

(

(grobj.py s2)
(grpy.grm 1)
(gryacc.py 5)
(helperclasses 16)
(otherLexCode 4)
(patterns 3)
(productionClass 12)
<ruleClass 15)

(
(
(
(
(

sexp.grm 17b)
tokenlist 2a)
tokens 2c)
yaccmain 7)

Index

addToFirst: 10, 13
addToFollow: 11, 13
computeFirst: 10, 17a
computeFollow: 11, 17a
computeNullable: 9b, 17a
contains: 13, 16
element: 1,6, 13, 15
elements: 13
elementType: 13

elt: 13

firstDone: &c, 10, 11
followDone: 8c, 11
grammar: 6, 8b
grparse: 7, 17a
isNull: 8a, 9b, 13

lhs: 9a, 9b, 10, 11, 15
me: 13

members: 13, 16
nullDone: 8c, 9b, 10

pdnelements: 9b, 10, 11, 12

printtable: 9a, 9b, 10, 11
production: 1,6, 12

productions: 9b, 10, 11, 15

rhs: 15
rule: 1,6, 9a, 15

pygrammar .nw

18

February 15, 2003 pygrammar .nw 19

rules: 8c, 9a, 9b, 10, 11
set: 13, 16
setNullable: 9b, 13
size: 106

tokenize: 4

union: 13, 16

	1 Introduction
	1.1 The Grammar for Grammar

	2 Lexical Scan and tokens
	3 Parsing.
	3.1 Python YACC file for parsing
	3.2 Yacc rules
	3.3 Classes defined for grammar parsing.
	3.4 Driver file for running grammar

	4 Test data
	5 Appendices

